首页> 外文OA文献 >A Comparative Study On Some Methods For HandlingudMulticollinearity Problems
【2h】

A Comparative Study On Some Methods For HandlingudMulticollinearity Problems

机译:几种处理方法的比较研究 ud多重共线性问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In regression, the objective is to explain the variation in one or more response variables, by associating this variation with proportional variation in one or more explanatory variables. A frequent obstacle is that several of the explanatory variables will vary in rather similar ways. As a result, their collective power of explanationudis considerably less than the sum of their individual powers. This phenomenon called multicollinearity, is a common problem in regression analysis. Handling multicollinearity problem in regression analysis is important because least squares estimations assumeudthat predictor variables are not correlated with each other. The performances of ridge regression (RR), principal component regression (PCR) and partial least squares regression (PLSR) in handling multicollinearity problem in simulated data sets are compared to help and give future researchers a comprehensive view about the bestudprocedure to handle multicollinearity problems. PCR is a combination of principal component analysis (PCA) and ordinary least squares regression (OLS) while PLSRudis an approach similar to PCR because a component that can be used to reduce the number of variables need to be constructed. RR on the other hand is the modifiedudleast square method that allows a biased but more precise estimator. The algorithm is described and for the purpose of comparing the three methods, simulated data setsudwhere the number of cases were less than the number of observations used. The goal was to develop a linear equation that relates all the predictor variables to a response variable. For comparison purposes, mean square errors (MSE) were calculated. A Monte Carlo simulation study was used to evaluate the effectiveness of these threeudprocedures. The analysis including all simulations and calculations were done using statistical package S-Plus 2000 software.ud
机译:在回归中,目标是通过将一个或多个响应变量的比例变化与一个或多个解释变量的比例变化相关联来解释该变量。一个常见的障碍是,一些解释变量将以相当相似的方式变化。结果,他们的集体解释权 udis大大小于其个人力量的总和。这种称为多重共线性的现象是回归分析中的常见问题。在回归分析中处理多重共线性问题很重要,因为最小二乘估计假设 u预测变量互不相关。比较了岭回归(RR),主成分回归(PCR)和偏最小二乘回归(PLSR)在模拟数据集中处理多重共线性问题的性能,以帮助并为未来的研究人员提供最佳的处理多重共线性的方法的综合观点。问题。 PCR是主成分分析(PCA)和普通最小二乘回归(OLS)的结合,而PLSR udis一种类似于PCR的方法,因为需要构建可用于减少变量数量的成分。另一方面,RR是改进的最小二乘方方法,它允许有偏但更精确的估计量。描述了该算法,并且为了比较这三种方法,模拟数据集 ud,其中案例数少于所使用的观察数。目的是开发一个线性方程,将所有预测变量与响应变量相关联。为了比较,计算了均方误差(MSE)。蒙特卡罗模拟研究被用来评估这三种方法的有效性。使用统计软件包S-Plus 2000软件进行了包括所有模拟和计算在内的分析。 ud

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号