首页> 外文OA文献 >Efficient iris segmentation using Grow-Cut algorithm for remotely acquired iris images
【2h】

Efficient iris segmentation using Grow-Cut algorithm for remotely acquired iris images

机译:使用Grow-Cut算法对虹膜进行高效虹膜分割

摘要

This paper presents a computationally efficient iris segmentation approach for segmenting iris images acquired from at-a-distance and under less constrained imaging conditions. The proposed iris segmentation approach is developed based on the cellular automata which evolves using the Grow-Cut algorithm. The major advantage of the developed approach is its computational simplicity as compared to the prior iris segmentation approaches developed for the visible illumination iris segmentation images. The experimental results obtained from the three publicly available databases, i.e. UBIRIS.v2, FRGC and CASIA.v4-distance have respectively achieved average improvement of 34.8%, 31.5% and 31.4% in the average segmentation error, as compared to the recently proposed competing/best approaches. The experimental results presented in this paper clearly demonstrate the superiority of the developed iris segmentation approach, i.e., significant reduction in computational complexity while providing comparable segmentation performance, for the distantly acquired iris images.
机译:本文提出了一种计算有效的虹膜分割方法,用于分割从远距离获取的虹膜图像,并在较少约束的成像条件下进行分割。基于使用Grow-Cut算法发展起来的细胞自动机,开发了提出的虹膜分割方法。与为可见光虹膜分割图像开发的现有虹膜分割方法相比,所开发方法的主要优点是其计算简单。与最近提出的竞争方法相比,从三个公共数据库UBIRIS.v2,FRGC和CASIA.v4-distance获得的实验结果平均分割误差分别平均提高了34.8%,31.5%和31.4%。 /最佳方法。本文介绍的实验结果清楚地证明了开发的虹膜分割方法的优越性,即对于远距离获取的虹膜图像,计算复杂性显着降低,同时提供了可比的分割性能。

著录项

  • 作者

    Tan CW; Kumar A;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号