首页> 外文期刊>Image Processing, IEEE Transactions on >Unified Framework for Automated Iris Segmentation Using Distantly Acquired Face Images
【24h】

Unified Framework for Automated Iris Segmentation Using Distantly Acquired Face Images

机译:使用远距离采集的人脸图像进行自动虹膜分割的统一框架

获取原文
获取原文并翻译 | 示例

摘要

Remote human identification using iris biometrics has high civilian and surveillance applications and its success requires the development of robust segmentation algorithm to automatically extract the iris region. This paper presents a new iris segmentation framework which can robustly segment the iris images acquired using near infrared or visible illumination. The proposed approach exploits multiple higher order local pixel dependencies to robustly classify the eye region pixels into iris or noniris regions. Face and eye detection modules have been incorporated in the unified framework to automatically provide the localized eye region from facial image for iris segmentation. We develop robust postprocessing operations algorithm to effectively mitigate the noisy pixels caused by the misclassification. Experimental results presented in this paper suggest significant improvement in the average segmentation errors over the previously proposed approaches, i.e., 47.5%, 34.1%, and 32.6% on UBIRIS.v2, FRGC, and CASIA.v4 at-a-distance databases, respectively. The usefulness of the proposed approach is also ascertained from recognition experiments on three different publicly available databases.
机译:使用虹膜生物特征识别技术进行远程人体识别具有很高的民用和监视应用,其成功需要开发鲁棒的分割算法来自动提取虹膜区域。本文提出了一种新的虹膜分割框架,该框架可以稳健地分割使用近红外或可见光照明获取的虹膜图像。所提出的方法利用多个更高阶的局部像素依赖性来将眼睛区域像素稳健地分类为虹膜或非虹膜区域。脸部和眼睛检测模块已合并到统一框架中,以自动提供来自脸部图像的局部眼睛区域以进行虹膜分割。我们开发了鲁棒的后处理运算算法,以有效缓解因分类错误而引起的噪点。本文提出的实验结果表明,与先前提出的方法相比,平均分割错误有了显着改善,即在UBIRIS.v2,FRGC和CASIA.v4远距数据库上分别达到了47.5%,34.1%和32.6%。 。还通过在三个不同的公共可用数据库上进行的识别实验确定了该方法的有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号