首页> 外文OA文献 >Convex nonnegative matrix factorization with manifold regularization
【2h】

Convex nonnegative matrix factorization with manifold regularization

机译:具有流形正则化的凸非负矩阵分解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nonnegative Matrix Factorization (NMF) has been extensively applied in many areas, including computer vision, pattern recognition, text mining, and signal processing. However, nonnegative entries are usually required for the data matrix in NMF, which limits its application. Besides, while the basis and encoding vectors obtained by NMF can represent the original data in low dimension, the representations do not always reflect the intrinsic geometric structure embedded in the data. Motivated by manifold learning and Convex NMF (CNMF), we propose a novel matrix factorization method called Graph Regularized and Convex Nonnegative Matrix Factorization (GCNMF) by introducing a graph regularized term into CNMF. The proposed matrix factorization technique not only inherits the intrinsic low-dimensional manifold structure, but also allows the processing of mixed-sign data matrix. Clustering experiments on nonnegative and mixed-sign real-world data sets are conducted to demonstrate the effectiveness of the proposed method.
机译:非负矩阵分解(NMF)已广泛应用于许多领域,包括计算机视觉,模式识别,文本挖掘和信号处理。但是,NMF中的数据矩阵通常需要非负条目,这限制了其应用。此外,虽然NMF获得的基础和编码向量可以低维表示原始数据,但这些表示并不总是反映嵌入在数据中的固有几何结构。受流形学习和凸NMF(CNMF)的启发,我们通过将图正则项引入CNMF中,提出了一种新颖的矩阵分解方法,称为图正则化和凸非负矩阵分解(GCNMF)。提出的矩阵分解技术不仅继承了固有的低维流形结构,而且允许处理混合符号数据矩阵。进行了非负和混合符号的真实世界数据集的聚类实验,以证明该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号