首页> 外文期刊>Neurocomputing >Semi-supervised convex nonnegative matrix factorizations with graph regularized for image representation
【24h】

Semi-supervised convex nonnegative matrix factorizations with graph regularized for image representation

机译:半监督凸非负矩阵分解与正则化图的图像表示

获取原文
获取原文并翻译 | 示例

摘要

Non-negative matrix factorization (NMF) is a very effective method for high dimensional data analysis, which has been widely used in computer vision. It can capture the underlying structure of image in the low dimensional space using its parts-based representations. However, nonnegative entries are usually required for the data matrix in NMF, which limits its application. Besides, it is actually an unsupervised method without making use of prior information of data. In this paper, we propose a novel method called Pairwise constrained Graph Regularized Convex Nonnegative Matrix Factorization (PGCNMF), which not only allows the processing of mixed-sign data matrix but also incorporates pairwise constraints generated among all labeled data into Convex NMF framework. We expect that images which have the same class label will have very similar representations in the low dimensional space as much as possible, while images with different class labels will have dissimilar representations as much as possible. Clustering experiments on nonnegative and mixed-sign real-world image datasets are conducted to demonstrate the effectiveness of the proposed method. (C) 2016 Elsevier B.V. All rights reserved.
机译:非负矩阵分解(NMF)是一种非常有效的高维数据分析方法,已在计算机视觉中得到广泛使用。它可以使用基于零件的表示来捕获低维空间中图像的基础结构。但是,NMF中的数据矩阵通常需要非负条目,这限制了其应用。此外,它实际上是一种无监督的方法,无需利用数据的先验信息。在本文中,我们提出了一种新的方法,称为成对约束图正则化凸非负矩阵分解(PGCNMF),该方法不仅允许处理混合符号数据矩阵,而且还将在所有标记数据之间生成的成对约束纳入Convex NMF框架。我们期望具有相同类别标签的图像在低维空间中将具有尽可能相似的表示,而具有不同类别标签的图像将具有尽可能不同的表示。进行了非负和混合符号的真实世界图像数据集的聚类实验,以证明该方法的有效性。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2017年第may10期|1-11|共11页
  • 作者单位

    PLA Univ Sci & Technol, Coll Command Informat Syst, Nanjing 210007, Jiangsu, Peoples R China|Tsinghua Univ, Ctr Informat Technol, Beijing 100084, Peoples R China|Xian Commun Inst, Xian 710106, Shaanxi, Peoples R China;

    Tsinghua Univ, Ctr Informat Technol, Beijing 100084, Peoples R China;

    Tsinghua Univ, Ctr Informat Technol, Beijing 100084, Peoples R China|Beijing Command Coll Chinese Peoples Armed Police, Beijing 100012, Peoples R China;

    PLA Univ Sci & Technol, Coll Command Informat Syst, Nanjing 210007, Jiangsu, Peoples R China|Tsinghua Univ, Ctr Informat Technol, Beijing 100084, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Convex-NMF; Graph Laplacian; Semisupervised learning; Clustering;

    机译:凸NMF;图拉普拉斯算子;半监督学习;聚类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号