首页> 外文OA文献 >Enhanced Radio Frequency (RF) collection with distributed wireless sensor networks
【2h】

Enhanced Radio Frequency (RF) collection with distributed wireless sensor networks

机译:带有分布式无线传感器网络的增强型射频(RF)收集

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this research, a novel approach for conducting signals intelligence from a distributed network of wireless nodes is developed. The primary objective of this research is enhancing signal collection in a specified target direction. Two conflicting priorities are addressed. One is the time required to determine the target direction and form the beams. The other is the energy consumption involved in developing these solutions. Two competing enhanced collection methodologies (ECM), ECM-1 and ECM-2, were developed and analyzed. ECM-1 uses a combination of time difference of arrival (TDOA) and adaptive beamforming. ECM-2 uses adaptive beamforming that performs a beamscan similar to phased-array radars. Additionally, two competing methods for forming the beams are developed. Method One uses data exclusively from the same elements. Method Two uses data from a new subset of sensors, for each iteration. Analytical expressions were derived for energy consumption and the time required to develop, to compare the competing methodologies. ECM-1 is shown to be far superior to ECM-2 in both energy consumption and the time required to enhance signal collection, whereas Method Two is shown to be far superior to Method One in formation of the beams.
机译:在这项研究中,开发了一种用于从无线节点的分布式网络进行信号智能的新颖方法。这项研究的主要目的是增强指定目标方向上的信号收集。解决了两个相互矛盾的优先事项。一种是确定目标方向并形成光束所需的时间。另一个是开发这些解决方案所涉及的能耗。开发并分析了两种竞争性的增强收集方法(ECM):ECM-1和ECM-2。 ECM-1使用到达时间差(TDOA)和自适应波束成形的组合。 ECM-2使用自适应波束成形,执行类似于相控阵雷达的波束扫描。此外,开发了两种形成梁的竞争方法。方法一专门使用来自相同元素的数据。方法2每次迭代都使用来自新传感器子集的数据。得出了能耗和开发所需时间的分析表达式,以比较竞争方法。在能量消耗和增强信号收集所需的时间方面,ECM-1被证明远远优于ECM-2,而在光束形成方面,方法2被证明远远优于方法1。

著录项

  • 作者

    Batson Mickey S.;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号