首页> 外文OA文献 >Construction and Analysis of Multi-Rate Partitioned Runge-Kutta Methods
【2h】

Construction and Analysis of Multi-Rate Partitioned Runge-Kutta Methods

机译:多比率分区Runge-Kutta方法的构建和分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Adaptive mesh refinement (AMR) of hyperbolic systems allows us to refine the spatial grid of an initial value problem (IVP), in order to obtain better accuracy and improved efficiency of the numerical method being used. However, the solutions obtained are still limited to the local Courant-Friedrichs-Lewy (CFL) time-step restrictions of the smallest element within the spatial domain. Therefore, we look to construct a multi-rate time-integration scheme capable of solving an IVP within each spatial sub-domain that is congruent with that sub-domains respective time-step size. The primary objective for this research is to construct a multi-rate method for use with AMR. In this thesis we will focus on constructing a 2nd order, multi-rate partitioned Runge-Kutta (MPRK2) scheme, such that the non-uniform mesh is constructed with the coarse and fine elements at a two-to-one ratio. We will use general 2nd and 4th order finite differences (FD) methods for non-uniform grids to discretize the spatial derivative, and then use this model to compare the MPRK2 time-integrator against three explicit, 2nd order, single-rate time-integrators Adams-Bashforth 2 (AB2), Backward Differentiation Formula 2 (BDF2), and Runge-Kutta 2 (RK2).
机译:双曲线系统的自适应网格细化(AMR)允许我们细化初始值问题(IVP)的空间网格,以便获得更好的准确性和所使用数值方法的改进效率。但是,所获得的解决方案仍限于空间域内最小元素的本地Courant-Friedrichs-Lewy(CFL)时间步长限制。因此,我们希望构建一种多速率时间积分方案,该方案能够解决与该子域各自的时间步长一致的每个空间子域内的IVP。这项研究的主要目的是构建一种用于AMR的多速率方法。在本文中,我们将重点放在构造二阶,多速率分区的Runge-Kutta(MPRK2)方案上,这样就可以用粗细元素以二比一的比率构造非均匀网格。我们将对不均匀网格使用通用的二阶和四阶有限差分(FD)方法离散化空间导数,然后使用该模型将MPRK2时间积分器与三个显式的二阶单速率时间积分器进行比较Adams-Bashforth 2(AB2),向后微分公式2(BDF2)和Runge-Kutta 2(RK2)。

著录项

  • 作者

    Mugg Patrick R.;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号