首页> 外文OA文献 >Towards ecosystem-based management of Tasmanian temperate rocky reefs: Community dynamics models indicate alternative community states and management strategies
【2h】

Towards ecosystem-based management of Tasmanian temperate rocky reefs: Community dynamics models indicate alternative community states and management strategies

机译:迈向塔斯马尼亚温带礁石的基于生态系统的管理:社区动力学模型表明了替代性的社区状态和管理策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Worldwide, ecosystems have demonstrated the potential for dramatic shifts to anudalternative persistent state under gradual long-term environmental changes or followingudsudden short-term perturbations. Such shifts are documented for numerous marineudexamples from coral reef to pelagic communities and may become more common asudecological dynamics adjust to climate-driven changes. These shifts are often sudden,udchallenging to predict and can have disastrous and unpredictable consequences on bothudecosystem functioning and the human activities that rely on the associated naturaludresources. They often result in irreversible dramatic changes in community structureudand productivity and represent a growing concern for managers of natural systems.udIn ecosystems where the presence of an alternative persistent state is well documented, theuddrivers of these shifts (e.g. anthropogenic stressors or changes in environmental conditions)udcan be analysed retrospectively so as to address key management questions, as has occurredudin several applications on coral reefs. However, phase shifts are often swift and observed audposteriori, i.e. after the ecosystem has shifted to the alternative state. Thus, thresholds inudecosystem dynamics are difficult to identify empirically despite that this is crucial for soundudmanagement of marine resources. Additionally, controlled experimental assessment of theudeffects of alternative management scenarios on community state is hardly ever achievableudin marine ecosystems. When they occur, phase shifts are unique to each ecosystem, henceudcase-specific simulation models present a valuable tool to explore ecological dynamicsudwith alternative persistent community states, test the effects of management scenariosudand inform decision-making.udOn the east coast of Tasmania, shallow rocky reef communities on the exposed coast mainlyudoccur in two alternative persistent states: (1) the seaweed bed state characterised by auddense productive canopy of macroalgae; or, (2) the sea urchin ‘barren’ state characterisedudby a poorly productive rocky habitat largely bare of seaweeds as a result of destructiveudgrazing by the long-spined sea urchin (Centrostephanus rodgersii ). The establishment of these widespread sea urchin barrens result from a combination of both: (1) the climatedrivenudrange extension of the long-spined sea urchin C. rodgersii from Australia’s mainlandudto Tasmania; and (2) depletion of key reef predators by fishing. Large southern rock lobsterud(Jasus edwardsii ) individuals constitute the main predator of the long-spined sea urchinudin Tasmania. Relative to the seaweed bed state, C. rodgersii barrens represent dramaticudlosses of habitat, species diversity and productivity, including commercial species such asudblacklip abalone (Haliotis rubra) and southern rock lobster, the two most valuable fisheriesudin Tasmania. Thus, the spread of sea urchin barrens presents a major and pressing threatudfor the lobster and abalone fishing industries.udThis thesis presents a suite of models specifically developed to better understand theuddynamics of Tasmanian rocky reef communities and inform management interventions toudmitigate destructive grazing of seaweed beds by the invasive long-spined sea urchin.udChapter 2 investigates the causal relationships between positive feedback and theudoccurrence of alternative states in community dynamics. Modelling of community feedbackudinformed by available qualitative knowledge about ecosystem structure constitutes audvaluable framework to detect the potential for alternative states in ecological dynamicsudas illustrated with some examples from Tasmanian rocky reef communities. Qualitativeudmodelling assists to understand the essential features of temperate reef dynamics aroundudTasmania, and provides a useful first step towards quantitative modelling of rocky reefuddynamics. The approach provides an ideal framework to (i) collate all available informationudabout rocky reef ecology, (ii) test model structure uncertainty, and (iii) identify key driversudof alternative states in ecosystem dynamics.udThe quantitative model presented in the subsequent chapters captures the dynamics ofudthe three key groups or species (i.e. the rock lobster, sea urchin, and seaweed assemblage)uddirectly involved in the positive feedback that drives the shift between alternative statesudon Tasmanian rocky reef. Chapter 3 describes the development, parameterisation andudcalibration of a mean field model of the local dynamics (reef area of 100 m2 - 10 ha)udof a reef community. The model’s ability to capture the potential for phase shifts, fromuddense seaweed bed to sea urchin barrens habitat and back, is validated against largescaleudpatterns observed on rocky reefs where C. rodgersii occurs. In the simulations,udthe time for extensive sea urchin barrens to form is of the order of two decades, while restoration of seaweed cover from the sea urchin barrens habitat takes about three decadesudif relying on management interventions that cannot effectively reduce urchin density toudzero. Thus, restoration of seaweed beds seems unrealistic to implement within the currentudtimeframe of management plans. Comprehensive model-independent sensitivity analysisudof model behaviour to parameter estimates also suggests that, in addition to lobster fishingudmortality, recruitment rates of sea urchins and rock lobsters, which are strongly influencedudby large scale oceanographic features and highly variable in eastern Tasmania, are keyudfactors in determining the potential for sea urchin barren formation in the model.udIn Chapter 4, sets of Monte-Carlo simulations with this model are used to address threeudsets of questions related to management for mitigation of sea urchin destructive grazingudof Tasmanian seaweed beds. Model behaviour suggests that thresholds in shifting fromudseaweed bed to sea urchin barren and restoration of seaweed cover reveal the existence of audhysteresis in model dynamics. The hysteresis implies that the establishment of sea urchinudbarrens cannot be reversed easily. These thresholds provide valuable ecological referenceudpoints to prevent the establishment of sea urchin barrens. The model indicates thatudculling of sea urchins appears as the most effective management strategy to minimise theudecological impact of C. rodgersii on Tasmanian reef communities. Indirect interventionsudrelying solely on the rebuilding of rock lobster population (through reduction in fishing orudimplementation of a maximum legal catch size) perform poorly but, when combined withuddirect control of the sea urchin population, they can provide optimal outcomes both inudterms of minimising barren formation and fishery performance. Finally, the model showsudthat to allow lobsters to play their critical ecological ‘service’ role in preventing sea urchinudbarrens formation, a reduction in lobster fishing mortality from current levels is required.udA maximum sustainable yield as estimated from the single species stock assessment modeluddoes not account for the ecosystem service delivered by larger lobsters, and the modelsudemphasise the need for an ecosystem-based fishery management approach.udThis suite of models contributes to the general understanding of mechanisms and driversudthat can facilitate shift between alternative states in ecological dynamics. The quantitativeudsimulation model provides specific information to managers about the drivers of shiftsudbetween the seaweed bed and the sea urchin barren state in the dynamics of Tasmanianudrocky reefs. In particular, the presence of a hysteresis in reef community dynamics meansudthat effort to prevent barrens formation constitutes a more viable and cost effective management strategy than the restoration of seaweed beds once extensive barrens habitatudhas developed. The commercially-fished rock lobster is an essential reef predator deliveringudkey ecosystem services to Tasmanian rocky reefs and model simulations highlight theudnecessity for fisheries management to move away from a single species focus and account forudthe ecological role of targeted commercial species. The tools implemented here to inform anudecosystem-based management of Tasmanian rocky reefs are generic and ‘transportable’ toudother ecosystems with alternative states. While C. rodgersii barrens currently constituteuda pressing concern for managers of reef communities and fisheries in Tasmania, the longspinedudsea urchin is only one example of a species that is dramatically restructuringudTasmanian reef communities. There are many other ‘natural’ invaders, whose ecosystemudroles and impacts are unknown, currently extending their distribution from Australia’sudmainland to the warming Tasmanian waters. In the coming decades, climate-drivenudchanges are likely to bring more surprises to Tasmanian rocky reefs, and just as manyudchallenges for the associated fisheries and their managers.
机译:在全球范围内,生态系统已显示出在逐渐的长期环境变化或突然或突然的短期扰动下可能急剧转变为替代性持久状态的潜力。从珊瑚礁到中上层群落的许多海洋实例都记录了这种变化,并且随着细菌学动态适应气候驱动的变化,这种变化可能变得更加普遍。这些变化通常是突然的,难以预测,并且可能会对udeco系统的功能以及依赖相关自然资源的人类活动造成灾难性和不可预测的后果。它们通常会导致社区结构的不可逆转的急剧变化 udand生产力,并越来越引起自然系统管理者的关注。 ud在有充分记载的替代性持久状态存在的生态系统中,这些变化的推动力(例如人为压力或可以追溯分析环境变化),以解决关键的管理问题,就像在珊瑚礁上的几种应用一样。然而,相移通常是迅速的,并且是在后验的,即在生态系统已经转变为替代状态之后。因此,尽管凭经验对海洋资源的合理管理至关重要,但很难凭经验确定生态系统动力学中的阈值。此外,几乎不可能实现对替代管理方案对社区状态的影响的受控实验评估。当它们发生时,相移对于每个生态系统都是唯一的,因此针对特定案例的模拟模型提供了一种宝贵的工具,可用于探索生态动态具有替代的持久社区状态,测试管理方案的效果 ud并为决策提供信息。塔斯马尼亚州东海岸,裸露的海岸上的浅岩礁群落主要以两种替代的持久状态出现:(1)海藻床状态,其特征是密集的大型藻类冠层;或(2)海胆处于“贫瘠”状态,其特征是生产力低下的多岩石栖息地,由于长旋海胆(Centrostephanus rodgersii)破坏性除草,该海域基本上没有海藻。这些海胆荒地的建立是由以下两种因素共同造成的:(1)来自澳大利亚大陆/塔斯马尼亚州的长旋海胆罗氏梭菌的气候驱动/远距离延伸; (2)捕捞消耗主要礁石的天敌。南部大型龙虾 ud(Jasus edwardsii)个体是长柄海胆 udin塔斯马尼亚岛的主要捕食者。相对于海藻床状态,罗氏梭菌(C.rodgersii barrens)代表着栖息地物种的大量减少和物种多样性和生产力,包括 udblacklip鲍鱼(Haliotis rubra)和南部龙虾这两种最有价值的渔业 uds塔斯马尼亚岛。因此,海胆贫瘠之地的传播对龙虾和鲍鱼捕捞业构成了重大而紧迫的威胁。 ud本文提出了一套专门开发的模型,以更好地了解塔斯马尼亚礁石群落的 uddynamics,并为管理干预措施提供信息第2章研究了积极反馈与社区动态中替代状态的偶然发生之间的因果关系。 ud第2章研究了积极反馈与替代状态的偶然发生之间的因果关系。塔斯马尼亚岩礁社区的一些例子说明了社区反馈的模型,该模型由可用的有关生态系统结构的定性知识提供的信息构成了一个可评估的框架,可用来检测生态动力学中的替代状态的可能性。定性 udmodeling有助于了解塔斯马尼亚岛周围的温带礁动力学的基本特征,并为岩礁 uddynamics定量建模提供了有用的第一步。该方法为(i)整理所有有关礁石生态学的可用信息 ud,(ii)测试模型结构的不确定性,以及(iii)识别生态系统动力学的替代状态的关键驱动因素 ud提供了一个理想的框架。随后的各章介绍了直接参与正反馈的三个主要组或物种(即龙虾,海胆和海藻组合)的动态,从而驱动了替代状态在塔斯马尼亚礁石之间的转换。第3章介绍了礁群落的局部动力学(礁面积100 m2-10 ha) ud的平均场模型的开发,参数化和校准。该模型具有捕获从浓密的海藻床到海胆贫瘠的栖息地以及返回的相变潜力的能力,已针对在罗氏梭菌发生的岩石礁石上观察到的大规模 udpatterns进行了验证。在模拟中,形成海胆贫瘠的海浪的时间大约是二十年,而从海胆贫瘠的栖息地中恢复海藻覆盖物大约需要三十年的时间,但依赖于无法有效降低海胆密度至零的管理干预措施。因此,在管理计划的当前超期限内实施恢复海藻床似乎是不现实的。综合的独立于模型的敏感性分析模型行为对参数估计的ud还表明,除了龙虾捕捞死亡率,塔斯马尼亚东部的大型海洋特征和高度可变的海胆和龙虾的招募率也受到强烈影响。 ,是确定模型中海胆贫瘠形成潜力的关键因素。 ud在第4章中,使用该模型进行的蒙特卡洛模拟集用于解决与缓解海胆破坏性管理相关的三个问题塔斯马尼亚海草床。模型的行为表明,从海藻床向海胆贫瘠转变以及海藻覆盖物恢复的阈值揭示了模型动力学中存在水滞现象。滞后现象意味着海胆 udbarrens的建立不能轻易逆转。这些阈值为防止海胆贫瘠的建立提供了宝贵的生态参考。该模型表明,对海胆进行消灭是最有效的管理策略,可最大程度地降低罗氏梭菌对塔斯马尼亚珊瑚礁群落的影响。仅仅依靠重建龙虾种群的间接干预(通过减少捕捞或过度利用最大合法捕捞量)效果不佳,但是,如果结合对海胆种群的直接控制,它们可以在减少贫瘠的形成和渔业表现的udterms。最后,该模型显示 ud为了使龙虾在防止海胆 udbarrens形成中发挥关键的生态“服务”作用,需要从当前水平降低龙虾捕捞死亡率。 ud根据单个物种估算的最大可持续产量种群评估模型 ud不能解释大龙虾提供的生态系统服务,并且模型可以简化基于生态系统的渔业管理方法的需求。 ud这套模型有助于对机制和驱动因素的一般理解 ud有助于在生态动力学的替代状态之间转换。定量模拟模型为管理人员提供了有关塔斯马尼亚 udrocky礁动态中的海藻床和海胆贫瘠状态之间转换 ud的驱动器的特定信息。特别是,在礁石群落动态中存在滞后现象意味着,一旦形成了广泛的贫瘠栖息地,防止海藻形成的努力比恢复海藻床构成了一种更可行,更具成本效益的管理策略。商业化捕捞的龙虾是为塔斯马尼亚礁石提供 udkey生态系统服务的必不可少的礁石掠食者,而模型模拟强调了渔业管理摆脱单一物种重点并说明目标商业物种的生态作用的必要性。在此,为基于塔科马尼亚礁石的基于生态系统管理而实施的工具是通用的,并且可以“转移”至具有替代状态​​的其他生态系统。罗氏梭菌目前是塔斯马尼亚岛珊瑚礁群落和渔业管理者的当务之急,而长刺的 udsea海胆只是该物种急剧重组塔斯马尼亚礁石群落的一个例子。还有许多其他“自然”入侵者,其生态系统干旱和影响尚不清楚,目前将其分布从澳大利亚的陆地延伸到塔斯马尼亚水域变暖。在未来的几十年中,气候驱动的变化会给塔斯马尼亚的礁石带来更多的惊喜,以及与之相关的渔业及其管理者面临的许多挑战。

著录项

  • 作者

    Marzloff MP;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号