首页> 外文OA文献 >Optimization approaches for the in silico discovery of optimal targets for gene over/underexpression
【2h】

Optimization approaches for the in silico discovery of optimal targets for gene over/underexpression

机译:在计算机上发现基因过表达/表达不足的最佳靶标的优化方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Metabolic engineering (ME) efforts have been recently boosted by the increase in thenumber of annotated genomes and by the development of several genome-scale metabolicmodels for microbes of interest in industrial biotechnology. Based on these efforts, strainoptimization methods have been proposed to reach the best set of genetic changes to apply toselected host microbes, in order to create strains that are able to overproduce metabolites ofindustrial interest. Previous work in strain optimization has been mostly based in findingsets of gene (or reaction) deletions that lead to desired phenotypes in computational simulations.In this work, we focus on enlarging the set of possible genetic changes, consideringgene over and underexpression. A gene is considered under (over) expressed if its expressionvalue is constrained to be significantly lower (higher) than the one in the wild-type strain,used as a reference. A method is proposed to propagate relative gene expression valuesto flux constraints over related reactions, making use of the available transcriptional/translational information. The algorithms chosen for the optimization tasks are metaheuristicssuch as eolutionary agorithm (EA) and smulated anealing (SA), based on previoussuccessful work on gene knockout optimization. These methods were modified appropriatelyto accommodate the novel optimization tasks and were applied to study the optimizationof succinic and lactic acid production using Escherichia coli as the host. The results arecompared with previous ones obtained in gene knockout optimization, thus showing theusefulness of the approach. The methods proposed in this work were implemented in a novelplug-in for OptFlux, an open-source software framework for ME. Supplementary Materialis available at www.liebertonline.com/cmb.
机译:最近,通过注释基因组数量的增加以及针对工业生物技术中感兴趣的微生物的几种基因组规模代谢模型的开发,促进了代谢工程(ME)的努力。基于这些努力,已经提出了菌株最优化方法以达到最佳遗传变化集,以应用于选定的宿主微生物,从而产生能够过量产生工业上感兴趣的代谢产物的菌株。先前菌株优化的工作主要基于基因(或反应)缺失的发现集,这些发现导致在计算模拟中产生所需的表型。在这项工作中,我们专注于扩大可能的遗传变化的集合,考虑基因过表达和表达不足。如果一个基因的表达值被约束为显着低于(高于)野生型菌株中的基因(用作参考),则认为该基因表达不足(过量)。提出了一种利用可用的转录/翻译信息将相对基因表达值传播至通量约束条件的相关反应的方法。根据先前成功进行的基因敲除优化工作,选择用于优化任务的算法是元启发式算法,例如,洗消法(EA)和密闭密封(SA)。对这些方法进行了适当修改,以适应新的优化任务,并应用于研究以大肠杆菌为宿主的琥珀酸和乳酸生产的优化。将结果与基因敲除优化中获得的结果进行比较,从而证明了该方法的实用性。这项工作中提出的方法已在OptFlux的新颖插件中实现,OptFlux是ME的开源软件框架。补充材料可从www.liebertonline.com/cmb获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号