首页> 外文OA文献 >Raw data pre-processing in the protozoa and metazoa identification by image analysis and multivariate statistical techniques
【2h】

Raw data pre-processing in the protozoa and metazoa identification by image analysis and multivariate statistical techniques

机译:通过图像分析和多元统计技术对原生动物和后生动物进行原始数据预处理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Different protozoa and metazoa populations develop in the activated sludge wastewater treatment processes and are highly dependent on the operating conditions. In the current work the protozoa and metazoa groups and species most frequent in wastewater treatment plants were studied, mainly the flagellate, sarcodine, and ciliate protozoa as well as the rotifer, gastrotrichia, and oligotrichia metazoa.The work is centered on the survey of the wastewater treatment plant conditions by protozoa and metazoa population using image analysis, discriminant analysis (DA), and neural networks (NNs) techniques, and its main objective was set on the evaluation of the importance of raw data pre-processing techniques in the final results. The main pre-processing techniques herein studiedwere the raw parameters reduction set by a joint cross-correlation and decision trees (DTs) procedure and two data normalization techniques: logarithmic normalization and standard deviation normalization.Regarding the parameters reduction methodology, the use of a joint DTs and correlation analysis (CA) procedure resulted in 28 and 30% reductions in terms of the initial parameters set for the stalked and non-stalked microorganisms, respectively. Consequently, the use of the reducedparameters set has proven to be a suitable starting point for both the DA and NNs methodologies, although for the DA an initial logarithmic normalization step is advisable. For the NNs analysis a standard deviation normalization procedure could be considered for the non-stalked microorganismsregarding the operating parameters assessment.
机译:在活性污泥废水处理过程中会发展出不同的原生动物和后生动物种群,并且高度依赖于运行条件。在当前的工作中,研究了废水处理厂中最常见的原生动物和后生动物种群以及物种,主要是鞭毛,肌氨酸和纤毛原生动物以及轮虫,胃棘和少毛后生动物。利用图像分析,判别分析(DA)和神经网络(NNs)技术按原生动物和后生动物种群划分的污水处理厂条件,其主要目标是评估最终结果中原始数据预处理技术的重要性。本文研究的主要预处理技术是通过联合互相关和决策树(DTs)程序和两种数据归一化技术设置的原始参数归约:对数归一化和标准差归一化。关于参数归约方法,联合使用DT和相关分析(CA)程序分别将针对秸秆和非秸秆微生物的初始参数设置分别降低了28%和30%。因此,尽管对于DA而言,建议使用初始对数归一化步骤,但对于DA和NNs方法论,已证明使用减少的参数集是合适的起点。对于NNs分析,可以考虑对非茎杆微生物进行标准偏差归一化程序,以评估其运行参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号