首页> 外文OA文献 >Stalked protozoa identification by image analysis and multivariable statistical techniques
【2h】

Stalked protozoa identification by image analysis and multivariable statistical techniques

机译:图像分析和多变量统计技术识别原生动物茎

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Protozoa are considered good indicators of thetreatment quality in activated sludge systems as they aresensitive to physical, chemical and operational processes.Therefore, it is possible to correlate the predominance ofcertain species or groups and several operational parameters ofthe plant. This work presents a semiautomatic image analysisprocedure for the recognition of the stalked protozoa speciesmost frequently found in wastewater treatment plants by determiningthe geometrical, morphological and signature dataand subsequent processing by discriminant analysis and neuralnetwork techniques. Geometrical descriptors were found to beresponsible for the best identification ability and the identificationof the crucial Opercularia and Vorticella microstomamicroorganisms provided some degree of confidence toestablish their presence in wastewater treatment plants.
机译:原生动物被认为是活性污泥系统中处理质量的良好指标,因为它们对物理,化学和操作过程敏感。因此,可以将某些物种或种群的优势与工厂的几个操作参数相关联。这项工作提出了一种半自动图像分析程序,用于识别废水处理厂中最常见的茎原生动物物种,方法是确定几何,形态和特征数据,然后通过判别分析和神经网络技术进行处理。发现几何描述符对最佳识别能力是负责任的,对关键小眼菌和涡虫微孔菌的鉴定为建立它们在废水处理厂中的存在提供了一定程度的信心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号