Recent years have witnessed the booming popularity of Crowdsourced Live Streaming (CLS) platforms, through which numerous amateur broadcasters lively stream their video contents to viewers around the world. The heterogeneous quality and format of source stream however require massive computational resource to transcode it into multiple industrial standard quality versions to serve viewers with distinct configurations. In this thesis, we analyze the large dataset we captured from the popular CLS platform Twitch TV. We then present a generic framework utilizing the powerful and elastic cloud computing services for crowdsourced live streaming with heterogeneous broadcasters and viewers. We jointly consider the viewer satisfaction and the service availability/pricing of geo-distributed cloud resources for transcoding. We first develop an optimal scheduler for allocating cloud instances with no regional constraints, and then extend the solution to accommodate regional constraints. However, given the considerable cost of cloud services, and the fact that the CLS platform charges nothing from viewers as a free system in nature, cloud-based transcoding solutions can only provide limited service, resulting in the current real-world situation. On the other hand, we witness huge computational resource among the massive fellow viewers in CLS systems that could potentially be used for transcoding. Inspired by the paradigm of Fog Computing, we propose CrowdTranscoding, a novel framework for CLS systems to smartly offload the transcoding assignment to the edge of network. We evaluate both of our novel frameworks with extensive trace-driven simulations and PlanetLab-based experiments, under diverse parameter settings. The superiority of our designs has been confirmed, while the experiment results also offer some further practical hints towards real-world migration.
展开▼
机译:近年来,目睹了Crowdsourced Live Streaming(CLS)平台的蓬勃发展,众多业余广播公司通过该平台向世界各地的观众生动地流媒体其视频内容。然而,源流的异构质量和格式需要大量的计算资源才能将其转码为多个行业标准质量版本,以为观看者提供不同的配置。在本文中,我们分析了从流行的CLS平台Twitch TV捕获的大型数据集。然后,我们提出了一个通用框架,该框架利用功能强大且具有弹性的云计算服务,与异构广播公司和观众进行众包直播。我们共同考虑了观众满意度和地理分布云资源的服务可用性/定价以进行转码。我们首先开发一种最佳的调度程序来分配没有区域限制的云实例,然后扩展解决方案以适应区域限制。但是,考虑到云服务的巨大成本以及CLS平台本质上是免费系统,免费向观众收取任何费用,基于云的转码解决方案只能提供有限的服务,从而导致当前的现实情况。另一方面,我们在CLS系统中的大量其他观看者中看到了巨大的计算资源,这些资源可能会用于转码。受Fog Computing范式的启发,我们提出了CrowdTranscoding,这是一种用于CLS系统的新颖框架,可将代码转换任务巧妙地卸载到网络边缘。我们在各种参数设置下,通过广泛的跟踪驱动模拟和基于PlanetLab的实验来评估这两个新颖的框架。我们的设计的优越性已经得到证实,而实验结果也为现实世界的迁移提供了一些进一步的实用提示。
展开▼