首页> 外文OA文献 >Evidence-Based Pediatric Outcome Predictors to Guide the Allocation of Critical Care Resources in a Mass Casualty Event
【2h】

Evidence-Based Pediatric Outcome Predictors to Guide the Allocation of Critical Care Resources in a Mass Casualty Event

机译:在大规模伤亡事件中,基于证据的儿科结果预测指标可指导重症监护资源的分配

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Objective: ICU resources may be overwhelmed by a mass casualty event, triggering a conversion to Crisis Standards of Care in which critical care support is diverted away from patients least likely to benefit, with the goal of improving population survival. We aimed to devise a Crisis Standards of Care triage allocation scheme specifically for children. Design: A triage scheme is proposed in which patients would be divided into those requiring mechanical ventilation at PICU presentation and those not, and then each group would be evaluated for probability of death and for predicted duration of resource consumption, specifically, duration of PICU length of stay and mechanical ventilation. Children will be excluded from PICU admission if their mortality or resource utilization is predicted to exceed predetermined levels (“high risk”), or if they have a low likelihood of requiring ICU support (“low risk”). Children entered into the Virtual PICU Performance Systems database were employed to develop prediction equations to assign children to the exclusion categories using logistic and linear regression. Machine Learning provided an alternative strategy to develop a triage scheme independent from this process. Setting: One hundred ten American PICUs Subjects: One hundred fifty thousand records from the Virtual PICU database. Interventions: None. Measurements and Main Results: The prediction equations for probability of death had an area under the receiver operating characteristic curve more than 0.87. The prediction equation for belonging to the low-risk category had lower discrimination. R2 for the prediction equations for PICU length of stay and days of mechanical ventilation ranged from 0.10 to 0.18. Machine learning recommended initially dividing children into those mechanically ventilated versus those not and had strong predictive power for mortality, thus independently verifying the triage sequence and broadly verifying the algorithm. Conclusion: An evidence-based predictive tool for children is presented to guide resource allocation during Crisis Standards of Care, potentially improving population outcomes by selecting patients likely to benefit from short-duration ICU interventions. (Pediatr Crit Care Med 2015; XX:00–00) Key Words: intensive care unit length of stay; intensive care unit mortality; mass casualty; palliative care; pandemic preparedness; triage
机译:目的:重伤病事件可能会使ICU的资源不堪重负,从而引发向危急护理标准的转变,在危急护理标准中,危重护理支持从最不可能受益的患者身上转移开来,目的是改善人口生存率。我们旨在制定专门针对儿童的《危机护理标准》分流分配方案。设计:提出了一种分流方案,其中将患者分为在PICU就诊时需要机械通气的患者和不需要的患者,然后将评估每组的死亡概率和预计资源消耗的持续时间,特别是PICU长度的持续时间停留和机械通风。如果预计儿童的死亡率或资源利用量超过预定水平(“高风险”),或者他们需要ICU支持的可能性很小(“低风险”),则将其排除在PICU外。使用进入虚拟PICU绩效系统数据库的儿童来开发预测方程,以使用逻辑回归和线性回归将儿童分配给排除类别。机器学习提供了一种替代策略,可以独立于此过程开发分类方案。设置:一百零一美国PICU主题:虚拟PICU数据库中的十五万条记录。干预措施:无。测量和主要结果:死亡概率的预测方程在接收器工作特性曲线下的面积大于0.87。属于低风险类别的预测方程具有较低的判别力。 PICU住院天数和机械通气天数的预测公式的R2为0.10至0.18。机器学习建议首先将孩子分为机械通气的孩子和没有通气的孩子,并且对死亡具有很强的预测能力,因此可以独立地验证分类顺序并广泛地验证算法。结论:为儿童提供了基于证据的预测工具,以指导危机护理标准期间的资源分配,通过选择可能受益于短期ICU干预的患者,可能改善人群预后。 (Pediatr Crit Care Med 2015; XX:00–00)关键词:重症监护病房住院时间;重症监护病房死亡率;大量伤亡姑息治疗;大流行防范分流

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号