首页> 外文OA文献 >Two-dimensional Gantt charts and a scheduling algorithm of Lawler
【2h】

Two-dimensional Gantt charts and a scheduling algorithm of Lawler

机译:二维甘特图和劳勒调度算法

摘要

In this note we give an alternate proof that a scheduling algorithm of Lawler [E.L. Lawler, Ann. Discrete Math., 2 (1978), pp. 75-90, E.L. Lawler and J.K. Lenstra, in Ordered Sets, I. Rival, ed., D. Reidel, 1982, pp. 655-675] finds the optimal solution for the scheduling problem 1/prec Sigma(j) w(j)C(j) when the precedence constraints are series-parallel. We do this by using a linear programming formulation of 1precSigma(j) w(j)C(j) introduced by Queyranne and Wang [Math. Oper. Res., 16 (1991), pp. 1-20]. Queyranne and Wang proved that their formulation completely describes the scheduling polyhedron in the case of series-parallel constraints; a by-product of our proof of correctness of Lawler's algorithm is an alternate proof of this fact. In the course of our proof it is helpful to use what might be called two-dimensional (2D) Gantt charts. We think these may find independent use, and to illustrate this we show that some recent work in the area becomes transparent using 2D Gantt charts.
机译:在本说明中,我们提供了另一种证明,即劳勒[E.L.劳勒,安。 Discrete Math。,2(1978),pp.75-90,E.L.劳勒和J.K. Lenstra在有序集中(I. Rival,编,D。Reidel,1982,第655-675页)找到了调度问题1 / prec Sigma(j)w(j)C(j)的最优解。优先约束是串并联的。我们通过使用Queyranne和Wang [Math。Math。歌剧Res。,16(1991),pp。1-20]。 Queyranne和Wang证明,在串并联约束的情况下,他们的公式完全描述了调度多面体。我们的Lawler算法正确性证明的副产品就是这一事实的替代证明。在我们的证明过程中,使用所谓的二维(2D)甘特图很有帮助。我们认为这些可以独立使用,并且为了说明这一点,我们使用2D甘特图表明该地区的一些最新工作变得透明。

著录项

  • 作者

    Goemans MX; Williamson DP;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号