首页> 外文OA文献 >Building KCNQ1/KCNE1 Channel Models and Probing their Interactions by Molecular-Dynamics Simulations
【2h】

Building KCNQ1/KCNE1 Channel Models and Probing their Interactions by Molecular-Dynamics Simulations

机译:建立KCNQ1 / KCNE1通道模型并通过分子动力学模拟探究它们的相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The slow delayed rectifier (IKs) channel is composed of KCNQ1 (pore-forming) and KCNE1 (auxiliary) subunits, and functions as a repolarization reserve in the human heart. Design of IKs-targeting anti-arrhythmic drugs requires detailed three-dimensional structures of the KCNQ1/KCNE1 complex, a task made possible by Kv channel crystal structures (templates for KCNQ1 homology-modeling) and KCNE1 NMR structures. Our goal was to build KCNQ1/KCNE1 models and extract mechanistic information about their interactions by molecular-dynamics simulations in an explicit lipid/solvent environment. We validated our models by confirming two sets of model-generated predictions that were independent from the spatial restraints used in model-building. Detailed analysis of the molecular-dynamics trajectories revealed previously unrecognized KCNQ1/KCNE1 interactions, whose relevance in IKs channel function was confirmed by voltage-clamp experiments. Our models and analyses suggest three mechanisms by which KCNE1 slows KCNQ1 activation: by promoting S6 bending at the Pro hinge that closes the activation gate; by promoting a downward movement of gating charge on S4; and by establishing a network of electrostatic interactions with KCNQ1 on the extracellular surface that stabilizes the channel in a pre-open activated state. Our data also suggest how KCNE1 may affect the KCNQ1 pore conductance.
机译:慢延迟整流器(IKs)通道由KCNQ1(形成孔)和KCNE1(辅助)亚基组成,在人的心脏中起着复极储备的作用。靶向IKs的抗心律不齐药物的设计需要KCNQ1 / KCNE1复合物的详细三维结构,而Kv通道晶体结构(KCNQ1同源性建模的模板)和KCNE1 NMR结构使这项任务成为可能。我们的目标是建立KCNQ1 / KCNE1模型,并在明确的脂质/溶剂环境中通过分子动力学模拟提取有关它们相互作用的机械信息。我们通过确认两组与模型构建中使用的空间约束无关的模型生成的预测来验证模型。分子动力学轨迹的详细分析揭示了以前无法识别的KCNQ1 / KCNE1相互作用,其在IKs通道功能中的相关性已通过电压钳实验得到了证实。我们的模型和分析提出了KCNE1减慢KCNQ1激活的三种机制:通过促进Pro铰链处的S6弯曲来关闭激活门;通过促进S4上门控电荷的向下移动;并且通过在细胞外表面建立与KCNQ1的静电相互作用网络,从而将通道稳定在开放前的激活状态。我们的数据还表明,KCNE1如何影响KCNQ1的孔导度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号