首页> 外文OA文献 >A Lexicographic Product Cancellation Property for Digraphs
【2h】

A Lexicographic Product Cancellation Property for Digraphs

机译:有向图的词典产品取消属性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There are four prominent product graphs in graph theory: Cartesian, strong, direct, and lexicographic. Of these four product graphs, the lexicographic product graph is the least studied. Lexicographic products are not commutative but still have some interesting properties. This paper begins with basic definitions of graph theory, including the definition of a graph, that are needed to understand theorems and proofs that come later. The paper then discusses the lexicographic product of digraphs, denoted $G circ H$, for some digraphs $G$ and $H$. The paper concludes by proving a cancellation property for the lexicographic product of digraphs $G$, $H$, $A$, and $B$: if $G circ H cong A circ B$ and $|V(G)| = |V(A)|$, then $G cong A$. It also proves additional cancellation properties for lexicographic product digraphs and the author hopes the final result will provide further insight into tournaments.
机译:图论中有四个突出的乘积图:笛卡尔,强,直接和词典。在这四个产品图中,字典词典产品图最少。词典产品不是可交换的,但仍具有一些有趣的属性。本文从图论的基本定义开始,包括图的定义,这是理解后面的定理和证明所必需的。然后,本文讨论了有向图$ G $和$ H $的有向图的词典产品,表示为$ G circ H $。本文最后证明了有向图$ G $,$ H $,$ A $和$ B $的词典产品的抵消性质:如果$ G circ H cong A circ B $和$ | V(G )| = | V(A)| $,然后是$ G cong A $。它还证明了词典产品有向图的其他取消属性,并且作者希望最终结果将提供对比赛的进一步了解。

著录项

  • 作者

    Manion Kendall;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号