首页> 外文OA文献 >IN VITRO VISUALIZATION OF PEDIATRIC SIZED MECHANICAL HEART VALVE PERFORMANCE USING AORTIC ROOT MODEL IN MOCK CIRCULATORY LOOP
【2h】

IN VITRO VISUALIZATION OF PEDIATRIC SIZED MECHANICAL HEART VALVE PERFORMANCE USING AORTIC ROOT MODEL IN MOCK CIRCULATORY LOOP

机译:循环循环中主动脉根模型对小儿机械性心脏瓣膜性能的体外可视化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Congenital heart valve disease is one of the most common abnormalities in children, with common valve defects being aortic stenosis, mitral stenosis, and valvular regurgitation. Although adult sized mechanical heart valve (MHV) replacements are widely studied and utilized, there are currently no FDA approved prosthetic heart valves available for the pediatric population. This is due to a variety of reasons such as a limited patient pool for clinical trials, limited valve sizes, and complex health histories in children. Much like adult sized mechanical heart valves, potential complications with pediatric heart valve replacements include thrombosis, blood damage due to high shear stresses, and cavitation. Due to pediatric sized MHVs being much smaller in size than adult MHVs, different fluid dynamic conditions and associated complications are expected. In order to accelerate the approval of pediatric sized heart valves for clinical use, it is important to first characterize and assess the fluid dynamics across pediatric sized heart valves. By understanding the hemodynamic performance of the valve, connections can be made concerning potential valve complications such as thrombosis and cavitation. The overall objective of this study is to better characterize and assess the flow field characteristics of a pediatric sized mechanical heart valve using flow visualization techniques in a mock circulatory loop. The mechanical heart valve chosen for this research was a size 17 mm Bjork-Shiley tilting disc valve, as this is a common size valve used for younger patients with smaller cardiovascular anatomy. The mock circulatory loop used in this research was designed to provide realistic pediatric physiological flow conditions, consisting of a Harvard Apparatus Pulsatile blood pump, venous reservoir, and a heart valve testing chamber. In order to expose the valve to realistic pediatric flow conditions, six unique pump operating conditions were tested that involved pre-determined heart rate and stroke volume combinations. In addition, a modified aortic root model was used to hold the mechanical heart valve in place within the loop and to provide more realistic aortic root geometry. This heart valve chamber was made from a transparent acrylic material, allowing for fluid flow visualization. A traditional Particle Image Velocimetry (PIV) experimental set up was used in order to illuminate the particles seeded within the fluid path, and thus allowing for the capture of sequential images using a high speed camera. The data collected throughout this study consisted of flow rate measurements using an ultrasonic flow meter, and the sequential PIV images obtained from the camera in order to analyze general flow characteristics across the pediatric valve. Such information regarding the flow profile across the valve allowed for conclusions to be made regarding the valve performance, such as average flow velocities and regions of regurgitant flow. By gaining a better understanding of the fluid dynamic profile across a pediatric sized heart valve, this may aid in the eventual approval of pediatric sized mechanical heart valves for future clinical use.
机译:先天性心脏瓣膜病是儿童中最常见的异常之一,常见的瓣膜缺陷是主动脉瓣狭窄,二尖瓣狭窄和瓣膜关闭不全。尽管成人尺寸的机械心脏瓣膜(MHV)替代品得到了广泛的研究和利用,但目前尚无FDA批准的儿科人群使用的人工心脏瓣膜。这是由于多种原因造成的,例如用于临床试验的患者人数有限,瓣膜大小有限以及儿童的健康史复杂。就像成人大小的机械心脏瓣膜一样,小儿心脏瓣膜置换术的潜在并发症包括血栓形成,由于高剪切应力导致的血液损伤和气蚀。由于小儿大小的MHV比成人MHV小得多,因此预期会有不同的流体动力学状况和相关并发症。为了加速批准小儿心脏瓣膜用于临床,重要的是首先表征和评估小儿心脏瓣膜的流体动力学。通过了解瓣膜的血液动力学性能,可以建立关于潜在瓣膜并发症(例如血栓形成和空化)的连接。这项研究的总体目标是在模拟循环回路中使用流量可视化技术更好地表征和评估小儿机械心脏瓣膜的流场特性。这项研究选择的机械心脏瓣膜是尺寸为17 mm的Bjork-Shiley斜盘瓣膜,因为这是用于心血管解剖结构较小的年轻患者的通用瓣膜。本研究中使用的模拟循环回路旨在提供现实的儿科生理流动条件,包括哈佛仪器脉动血泵,静脉储液器和心脏瓣膜测试室。为了使瓣膜暴露于现实的儿科血流状况,测试了六个独特的泵工况,这些工况涉及预定的心率和搏动量组合。另外,使用改良的主动脉根模型将机械心脏瓣膜固定在环内,并提供更逼真的主动脉根几何形状。该心脏瓣膜腔室由透明的丙烯酸材料制成,可观察到流体流动。使用传统的粒子图像测速(PIV)实验装置来照亮流体路径中播种的粒子,从而允许使用高速相机捕获连续图像。在整个研究过程中收集的数据包括使用超声波流量计进行的流量测量以及从摄像机获取的顺序PIV图像,以便分析整个儿科瓣膜的总体流量特性。关于阀上的流量分布的这种信息允许得出关于阀性能的结论,例如平均流量和反流区域。通过更好地了解儿科大小的心脏瓣膜的流体动力学特性,这可能有助于最终批准儿科大小的机械心脏瓣膜用于将来的临床应用。

著录项

  • 作者

    Lederer Sarah;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号