首页> 外文OA文献 >Hybrid PSO-PWL-Dijkstra approach for path planning of non holonomic platforms in dense contexts
【2h】

Hybrid PSO-PWL-Dijkstra approach for path planning of non holonomic platforms in dense contexts

机译:稠密环境下非完整平台路径规划的混合PSO-PWL-Dijkstra方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Planning is an essential capability for autonomous robots. Many applications impose a diversity of constraints and traversing costs in addition to the usually considered requirement of obstacle avoidance. In applications such as route planning, the use of dense properties is convenient as these describe the terrain and other aspects of the context of operation more rigorously and are usually the result of a concurrent mapping and learning process. Unfortunately, planning for a platform with more than three degrees of freedom can be computationally expensive, particularly if the application requires the platform to optimally deal with a thorough description of the terrain.The objective of this thesis is to develop and demonstrate an efficient path planning algorithm based on dynamic programming. The goal is to compute paths for ground vehicles with and without trailers, that minimise a specified cost-to-go while taking into account dynamic constraints of the vehicle and dense properties of the environment. The proposed approach utilises a Quadtree Piece-Wise Linear (QT-PWL) approximation to describe the environment in a low dimensional subspace and later uses a particle approach to introduce the dynamic constraints of the vehicle and to smooth the path in the full dimensional configuration space. This implies that the optimisation process can exploit the QT-PWL partition. Many usual contexts of operation of autonomous platforms have cluttered spaces and large regions where the dense properties are smooth; therefore, the QT-PWL partition is able to represent the context in a fraction of cells that would be needed by a homogeneous grid. The proposed methodology includes adaptations to both algorithms to achieve higher efficiency of the computational cost and optimality of the planned path.In order to demonstrate the capabilities of the algorithm, an idealized test case is presented and discussed. The case for a car and a tractor with multiple trailers is presented. A real path planning example is presented in addition to the synthetic experiments. Finally, the experiments and results are analysed and conclusions and directions for possible future work are presented.
机译:规划是自主机器人的一项基本功能。除了通常考虑的避障要求外,许多应用还施加了各种各样的约束和穿越成本。在路线规划等应用中,密集属性的使用很方便,因为这些属性更严格地描述了地形和操作上下文的其他方面,并且通常是并发映射和学习过程的结果。不幸的是,规划具有三个以上自由度的平台可能会在计算上昂贵,特别是如果应用程序要求平台以最佳方式处理地形的完整描述时。本论文的目的是开发和演示有效的路径规划基于动态规划的算法。目标是计算带或不带拖车的地面车辆的路径,在考虑到车辆的动态约束和环境的密集特性的情况下,将指定的运输成本降至最低。所提出的方法利用四叉树分段智能(QT-PWL)逼近来描述低维子空间中的环境,然后使用粒子方法引入车辆的动态约束并在全维配置空间中平滑路径。这意味着优化过程可以利用QT-PWL分区。自治平台的许多常见操作环境都有混乱的空间和大区域,密集的属性非常平滑。因此,QT-PWL分区能够在同构网格所需的一部分单元格中表示上下文。所提出的方法包括对两种算法的适应,以实现更高的计算成本效率和计划路径的最优性。为了证明算法的功能,提出并讨论了一种理想的测试案例。介绍了带有多个拖车的汽车和拖拉机的情况。除了综合实验之外,还提供了一个真实的路径规划示例。最后,对实验和结果进行了分析,并提出了可能的未来工作的结论和方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号