首页> 外文OA文献 >Robust Nonlinear Control System Design for Hypersonic Flight Vehicles
【2h】

Robust Nonlinear Control System Design for Hypersonic Flight Vehicles

机译:高超音速飞行器的鲁棒非线性控制系统设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

This thesis develops a new nonlinear robust control design procedure which addresses some of the challenges associated with the control of uncertain nonlinear system and applies the proposed method to tracking control of an Air-breathing Hypersonic Flight Vehicle (AHFV). The AHFV is a highly nonlinear system and the combination of nonlinear dynamics, parameter uncertainty and complex constraints make the flight control design a challenging task for this type of vehicle. The main contribution of this thesis lies in the fact that it presents a robust feedback linerization based strategy which solves the control issue of a class of nonlinear systems subject to parametric uncertainty. The method is effectively applied to the tracking control of an AHFV. It is also demonstrated that the proposed approach can be used to design a single robust controller for a large flight envelope rather than using several gain scheduled controllers. This research, firstly presents three different approaches to develop linearized uncertainty models for a class of nonlinear systems using a robust feedback lnearization method. The feedback linearization approach to linearize the nonlinear dynamics has some advantages over the point linearization (Jacobian linearization) method. However, the feedback linearization method only linearizes the nominal model of a system and in the presence of uncertainty in the model the exact linearization is not possible. In this thesis, we present a robust approach to deal with the nonlinearities arising from the uncertainties in the system and use a nonlinear AHFV model to demonstrate the effectiveness of the method. Besides parametric uncertainty, due to the presence of body-integrated propulsion system, and the flexible modes, the nonlinear model of AHFV does not possess full relative degree. Any attempt to feedback linearize this nonlinear model will result into having input term in low order derivatives of the system output. In this research, we strategically remove the coupling and flexible effects from the nonlinear model and simplify the model in such a way that the full relative degree condition is satisfied. In the development of linearized uncertainty model for an AHFV the conventional feedback linearization approach is used to remove the known nonlinearities from the simplified system model and the nonlinearities arising from the uncertainties are treated in three different ways. In the first method, nonlinear uncertainties are linearized using Taylor expansion at an arbitrary point by considering a structured representation of uncertainties. This lienarization approach approximates the actual nonlinear uncertainty by considering only the first order terms and neglecting all the higher order terms. For the linearized model, a minimax Linear Quadratic Regulator (LQR) controller combined with feedback linearization law is proposed to fulfill the velocity and altitude tracking requirements of an AHFV. In the second method, an unstructured uncertainty representation is considered and a minimax Linear Quadratic Gaussian (LQG) controller combined with feedback linearization law is proposed for the same tracking requirements. In the third, method the nonlinear uncertainty terms are linearized at an arbitrary point using the generalized mean value theorem. The main advantages of using this approach are that upper bound on the uncertainties can be obtained by both structured and unstructured uncertainty representations and there is no need to ignore higher order uncertainty terms. The uncertain linearized models obtained from this method are followed by guaranteed cost and minimax LQR controllers combined with feedback linearization law. Rigorous simulations using actual nonlinear model for all the above methods are presented in the thesis to analyze the effectiveness of these controllers. These simulations have considered several cases of uncertainties for a step change in the reference commands. In order to see the robustness properties of the proposed robust scheme a Monte-Calro based simulation is also presented by considering the given bound on the uncertain parameters. Also, in order to demonstrate the effectiveness of the approach for a large flight envelope, several simulations are performed to observe the tracking response for the given reference trajectories in a large flight envelope.
机译:本文开发了一种新的非线性鲁棒控制设计程序,该程序解决了与不确定非线性系统的控制相关的一些挑战,并将所提出的方法应用于空气呼吸式超音速飞行器(AHFV)的跟踪控制。 AHFV是一个高度非线性的系统,非线性动力学,参数不确定性和复杂约束的结合使飞行控制设计成为此类车辆的一项艰巨任务。本文的主要贡献在于它提出了一种基于鲁棒反馈线性化的策略,该策略解决了一类非线性系统的参数不确定性的控制问题。该方法有效地应用于AHFV的跟踪控制。还证明了所提出的方法可用于为大型飞行包线设计单个鲁棒控制器,而不是使用多个增益调度控制器。这项研究首先提出了三种不同的方法,即使用鲁棒的反馈线性化方法为一类非线性系统开发线性化不确定性模型。相对于点线性化(Jacobian线性化)方法,用于使非线性动力学线性化的反馈线性化方法具有一些优势。但是,反馈线性化方法只能线性化系统的标称模型,并且在模型中存在不确定性的情况下,不可能进行精确的线性化。在本文中,我们提出了一种鲁棒的方法来处理系统不确定性引起的非线性,并使用非线性AHFV模型来证明该方法的有效性。除了参数不确定性之外,由于存在人体集成推进系统和灵活的模式,AHFV的非线性模型不具有完整的相对程度。任何试图使该非线性模型线性化的尝试都将导致输入项处于系统输出的低阶导数中。在这项研究中,我们从策略上消除了非线性模型的耦合和柔性效应,并通过满足完全相对程度条件的方式简化了模型。在针对AHFV的线性不确定性模型的开发中,使用常规的反馈线性化方法从简化的系统模型中消除已知的非线性,并以三种不同方式处理由不确定性引起的非线性。在第一种方法中,通过考虑不确定性的结构化表示,使用泰勒展开在任意点处将非线性不确定性线性化。通过仅考虑一阶项而忽略了所有高阶项,这种列线化方法近似于实际的非线性不确定性。对于线性化模型,提出了结合反馈线性化定律的极小线性二次调节器(LQR)控制器,以满足AHFV的速度和高度跟踪要求。在第二种方法中,考虑了非结构化不确定性表示,并针对相同的跟踪要求,提出了结合反馈线性化定律的极小线性二次高斯(LQG)控制器。在第三种方法中,使用广义平均值定理将非线性不确定性项在任意点处线性化。使用这种方法的主要优点是,不确定性的上限可以通过结构化和非结构化不确定性表示获得,并且无需忽略高阶不确定性项。从该方法获得的不确定线性化模型之后是保证成本和带有反馈线性化定律的minimax LQR控制器。本文针对上述所有方法,都使用实际的非线性模型进行了严格的仿真,以分析这些控制器的有效性。这些模拟考虑了参考命令步进变化的几种不确定情况。为了查看所提出的鲁棒方案的鲁棒性,还考虑了不确定参数上的给定界限,提出了基于蒙特卡洛的仿真方法。另外,为了证明该方法对较大飞行包线的有效性,执行了一些模拟以观察在较大飞行包线中给定参考轨迹的跟踪响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号