首页> 外文OA文献 >Covariance Matrix Estimation and Particle Filtering Methods for Parameter Estimation in Stochastic Volatility Models
【2h】

Covariance Matrix Estimation and Particle Filtering Methods for Parameter Estimation in Stochastic Volatility Models

机译:随机波动率模型中参数估计的协方差矩阵估计和粒子滤波方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The primary focus of the first chapter of this thesis is to estimate high dimensional covariance matrices in a Bayesian set-up. Unless the number of observations is very large, estimating a covariance matrix with the positive definiteness constraint is often inefficient. We propose an effective regularization scheme that exploits the method proposed in Giordani et al.(2012). We reparameterise the covariance matrix through the Cholesky decomposition of the correlation matrix and estimate Cholesky elements by maximizing the log-posterior using a stochastic optimization algorithm. We investigate the performance of proposed method under different loss functions and also apply it to three real data examples.From the second chapter onwards, we concentrate on the estimation of volatility models which can be represented by state space models. Particle filters provide an approach to inference for such models where observations arrive sequentially in time. It was originally developed for online filtering and prediction of nonlinear or non-Gaussian state space models. The literature to learn about model parameters using the particle filtering is rather limited. This thesis makes a contribution to the literature on the stochastic volatility models by implementing particle markov chain monte carlo methods (pMCMC), specifically particle Gibbs with backward simulation methods, to infer about the model parameters. The asymmetry (or leverage which capture the correlations between the innovations of the asset returnsand those of the latent volatility processes) effect is one of the main issues in financial econometrics and it will be explored in this thesis. The chapters of this thesis provide distinct but complementary contributions to the literature of parameter estimation of stochastic volatility models.In multivariate time series analysis, multivariate stochastic volatility model with leverage and cross leverage effects are considered and extended to heavy tailed errors. This model has some desirable properties, both in terms of statistics and empirical perspectives. The deviance information criterion (DIC) is used as model selection criteria. Applied to U.S., UK and Germany stock prices, the model generated some interesting results, including that cross leverage effects are significantly high in absolute value and heavy tailed errors are preferred over Gaussian errors.
机译:本论文第一章的主要重点是估计贝叶斯设置中的高维协方差矩阵。除非观察的数量非常多,否则用正定性约束估计协方差矩阵通常是无效的。我们提出了一种有效的正则化方案,该方案利用了Giordani等人(2012)中提出的方法。我们通过相关矩阵的Cholesky分解对协方差矩阵进行重新参数化,并使用随机优化算法通过最大化对数后验来估计Cholesky元素。我们研究了该方法在不同损失函数下的性能,并将其应用于三个实际数据示例。从第二章开始,我们着重研究了可以用状态空间模型表示的波动率模型的估计。粒子过滤器为这种模型提供了一种推理方法,在这种模型中,观测值会按时间顺序到达。它最初是为在线过滤和预测非线性或非高斯状态空间模型而开发的。使用粒子滤波学习模型参数的文献非常有限。本文通过采用粒子马尔可夫链蒙特卡洛方法(pMCMC),特别是采用反向模拟方法的粒子吉布斯来推断模型参数,为随机波动率模型的文献做出了贡献。不对称(或捕获资产收益率创新与潜在波动过程创新之间的相互关系的杠杆)效应是金融计量经济学的主要问题之一,本文将对此进行探讨。本文的各章为随机波动率模型的参数估计文献提供了独特而互补的贡献。在多元时间序列分析中,考虑了具有杠杆效应和交叉杠杆效应的多元随机波动率模型,并将其扩展到重尾误差。无论是从统计角度还是从经验角度来看,该模型都具有一些理想的属性。偏差信息标准(DIC)用作模型选择标准。将该模型应用于美国,英国和德国的股票价格后,得出了一些有趣的结果,包括交叉杠杆效应的绝对值非常高,并且重尾误差优于高斯误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号