首页> 外文OA文献 >Automatic Landing of a Rotary-Wing UAV in Rough Seas
【2h】

Automatic Landing of a Rotary-Wing UAV in Rough Seas

机译:旋翼无人机在波涛汹涌的大海中自动降落

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rotary-wing unmanned aerial vehicles (RUAVs) have created extensive interest in the past few decades due to their unique manoeuverability and because of their suitability in a variety of flight missions ranging from traffic inspection to surveillance and reconnaissance. The ability of a RUAV to operate from a ship in the presence of adverse winds and deck motion could greatly extend its applications in both military and civilian roles. This requires the design of a flight control system to achieve safe and reliable automatic landings. Although ground-based landings in various scenarios have been investigated and some satisfactory flight test results are obtained, automatic shipboard recovery is still a dangerous and challenging task. Also, the highly coupled and inherently unstable flight dynamics of the helicopter exacerbate the difficulty in designing a flight control system which would enable the RUAV to attenuate the gust effect. This thesis makes both theoretical and technical contributions to the shipboard recovery problem of the RUAV operating in rough seas. The first main contribution involves a novel automatic landing scheme which reduces time, cost and experimental resources in the design and testing of the RUAV/ship landing system. The novelty of the proposed landing system enables the RUAV to track slow-varying mean deck height instead of instantaneous deck motion to reduce vertical oscillations. This is achieved by estimating the mean deck height through extracting dominant modes from the estimated deck displacement using the recursive Prony Analysis procedure. The second main contribution is the design of a flight control system with gust-attenuation and rapid position tracking capabilities. A feedback-feedforward controller has been devised for height stabilization in a windy environment based on the construction of an effective gust estimator. Flight tests have been conducted to verify its performance, and they demonstrate improved gust-attenuation capability in the RUAV. The proposed feedback-feedforward controller can dynamically and synchronously compensate for the gust effect. In addition, a nonlinear H1 controller has been designed for horizontal position tracking which shows rapid position tracking performance and gust-attenuation capability when gusts occur. This thesis also contains a description of technical contributions necessary for a real-time evaluation of the landing system. A high-infedlity simulation framework has been developed with the goal of minimizing the number of iterations required for theoretical analysis, simulation verification and flight validation. The real-time performance of the landing system is assessed in simulations using the C-code, which can be easily transferred to the autopilot for flight tests. All the subsystems are parameterized and can be extended to different RUAV platforms. The integration of helicopter flight dynamics, flapping dynamics, ship motion, gust effect, the flight control system and servo dynamics justifies the reliability of the simulation results. Also, practical constraints are imposed on the simulation to check the robustness of the flight control system. The feasibility of the landing procedure is confimed for the Vario helicopter using real-time ship motion data.
机译:旋转翼无人飞行器(RUAV)在过去的几十年中引起了广泛的兴趣,这是由于其独特的机动性,以及它们在从交通检查到监视和侦察的各种飞行任务中的适用性。 RUAV在逆风和甲板运动的情况下在船舶上运行的能力可以大大扩展其在军事和民用领域中的应用。这需要设计飞行控制系统来实现安全可靠的自动着陆。尽管已经研究了各种情况下的地面降落并获得了令人满意的飞行测试结果,但自动舰载恢复仍然是一项危险而具有挑战性的任务。同样,直升机的高度耦合和固有的不稳定飞行动力学加剧了设计飞行控制系统的难度,该系统将使RUAV减弱阵风效应。本文为在海上航行的RUAV的舰载恢复问题提供了理论和技术上的帮助。第一个主要贡献涉及一种新颖的自动着陆方案,该方案可减少RUAV /舰船着陆系统的设计和测试中的时间,成本和实验资源。所提出的着陆系统的新颖性使RUAV能够跟踪缓慢变化的平均甲板高度,而不是瞬时的甲板运动,以减少垂直振动。这是通过使用递归Prony分析程序从估计的甲板位移中提取主导模式来估计平均甲板高度来实现的。第二个主要贡献是具有阵风衰减和快速位置跟踪功能的飞行控制系统的设计。基于有效阵风估计器的构造,已经设计了一种反馈前馈控制器,用于在大风环境中稳定高度。已经进行了飞行测试以验证其性能,并且它们证明了RUAV中改进的阵风衰减能力。所提出的反馈前馈控制器可以动态和同步地补偿阵风效应。此外,还针对水平位置跟踪设计了非线性H1控制器,该控制器在出现阵风时具有快速的位置跟踪性能和阵风衰减能力。本文还描述了对着陆系统进行实时评估所需的技术贡献。为了使理论分析,仿真验证和飞行验证所需的迭代次数最小化,已经开发了一个高自发性的仿真框架。使用C代码在仿真中评估着陆系统的实时性能,该代码可以轻松转移至自动驾驶仪进行飞行测试。所有子系统均已参数化,可以扩展到不同的RUAV平台。直升机飞行动力学,襟翼动力学,船舶运动,阵风效应,飞行控制系统和伺服动力学的集成证明了仿真结果的可靠性。而且,对模拟施加了实际约束以检查飞行控制系统的鲁棒性。使用实时船舶运动数据,可以确定Vario直升机着陆程序的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号