首页> 外文OA文献 >Transparency Property of One Dimensional Acoustic Wave Equations
【2h】

Transparency Property of One Dimensional Acoustic Wave Equations

机译:一维声波方程的透明度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis proposes a new proof of the acoustic transparency theorem for material with a bounded variation. The theorem states that if the material properties (density, bulk modulus) is of bounded variation, the net power transmitted through the point z = 0 over a time interval [−T,T] is greater than some constant times the energy at the time zero over a spatial interval [0,Z], provided that T equals the time of travel of a wave from 0 to Z. This means the reflected energy of an input into the earth will be received. Otherwise, the reflections may not arrive at the surface. A proof gives a lower bound for material properties (density, bulk modulus) with bounded variation using sideways energy estimate. A different lower bound that works only for piecewise constant coefficients is also given. It gives a lower bound by analyzing reflections and transmissions of the waves at the jumps of the material properties. This thesis also gives an example to illustrate that the bounded variation assumption may not be necessary for the medium to be transparent. This thesis also discusses relations between the transparency property and the data of an inverse problem.
机译:本文为有界变化的材料的透声定理提出了新的证明。该定理指出,如果材料特性(密度,体积模量)具有一定的变化,则在时间间隔[-T,T]内通过点z = 0传输的净功率大于该时间能量的某个常数倍。如果T等于波从0到Z的传播时间,则在空间间隔[0,Z]上为零。这意味着将接收输入到地球的反射能量。否则,反射可能不会到达表面。证明使用侧向能量估计给出了材料特性(密度,体积模量)的下界,并带有一定的变化。还给出了仅适用于分段常数系数的不同下限。通过分析材料特性跃变时的波的反射和透射,可以给出一个下界。本文还给出了一个例子来说明有界变化假设对于透明介质可能不是必需的。本文还讨论了透明性与反问题数据之间的关系。

著录项

  • 作者

    Huang Yin;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号