首页> 外文期刊>Geophysical Prospecting >A nearly analytic symplectic partitioned Runge-Kutta method based on a locally one-dimensional technique for solving two-dimensional acoustic wave equations
【24h】

A nearly analytic symplectic partitioned Runge-Kutta method based on a locally one-dimensional technique for solving two-dimensional acoustic wave equations

机译:基于局部一维技术的近似解析辛分割Runge-Kutta方法求解二维声波方程

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we develop a new nearly analytic symplectic partitioned Runge-Kutta method based on locally one-dimensional technique for numerically solving two-dimensional acoustic wave equations. We first split two-dimensional acoustic wave equation into the local one-dimensional equations and transform each of the split equations into a Hamiltonian system. Then, we use both a nearly analytic discrete operator and a central difference operator to approximate the high-order spatial differential operators, which implies the symmetry of the discretized spatial differential operators, and we employ the partitioned second-order symplectic Runge-Kutta method to numerically solve the resulted semi-discrete Hamiltonian ordinary differential equations, which results in fully discretized scheme is symplectic unlike conventional nearly analytic symplectic partitioned Runge-Kutta methods. Theoretical analyses show that the nearly analytic symplectic partitioned Runge-Kutta method based on locally one-dimensional technique exhibits great higher stability limits and less numerical dispersion than the nearly analytic symplectic partitioned Runge-Kutta method. Numerical experiments are conducted to verify advantages of the nearly analytic symplectic partitioned Runge-Kutta method based on locally one-dimensional technique, such as their computational efficiency, stability, numerical dispersion and long-term calculation capability.
机译:在本文中,我们开发了一种新的基于局部一维技术的近似解析辛划分的Runge-Kutta方法,用于数值求解二维声波方程。我们首先将二维声波方程分解为局部一维方程,然后将每个分解方程转换为哈密顿系统。然后,我们同时使用近似解析离散算子和中央差分算子来近似高阶空间微分算子,这暗示了离散空间微分算子的对称性,并且采用了分区二阶辛Runge-Kutta方法用数值方法求解所得的半离散哈密顿常微分方程,这导致完全离散的方案是辛的,这与传统的近似解析辛分割的Runge-Kutta方法不同。理论分析表明,基于局部一维技术的近似解析辛分割的Runge-Kutta方法比近似解析辛分割Runge-Kutta方法具有更高的稳定性极限和较小的数值离散。进行了数值实验,验证了基于局部一维技术的近似解析辛划分的Runge-Kutta方法的优点,如计算效率,稳定性,数值分散性和长期计算能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号