首页> 外文OA文献 >Discontinuous Galerkin Methods for Elliptic Partial Differential Equations with Random Coefficients
【2h】

Discontinuous Galerkin Methods for Elliptic Partial Differential Equations with Random Coefficients

机译:具有随机系数的椭圆型偏微分方程的间断Galerkin方法。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis proposes and analyses two numerical methods for solving elliptic partial differential equations with random coefficients. The stochastic problem is first transformed into a parametrized one by the use of the Karhunen--Loève expansion. This new problem is then discretized by the discontinuous Galerkin (DG) method. A priori error estimate in the energy norm for the stochastic discontinuous Galerkin solution is derived. In addition, the expected value of the numerical error is theoretically bounded in the energy norm and the L2 norm. In the second approach, the Monte Carlo method is used to generate independent identically distributed realizations of the stochastic coefficients. The resulting deterministic problems are solved by the DG method. Next, estimates are obtained for the error between the average of these approximate solutions and the expected value of the exact solution. The Monte Carlo discontinuous Galerkin method is tested numerically on several examples. Results show that the nonsymmetric DG method is stable independently of meshes and the value of penalty parameter. Symmetric and incomplete DG methods are stable only when the penalty parameter is large enough. Finally, comparisons with the Monte Carlo finite element method and the Monte Carlo discontinuous Galerkin method are presented for several cases.
机译:本文提出并分析了两种求解具有随机系数的椭圆型偏微分方程的数值方法。随机问题首先通过使用Karhunen-Loève展开转化为参数化问题。然后通过不连续Galerkin(DG)方法离散化此新问题。推导了随机不连续Galerkin解的能量范数中的先验误差估计。另外,数值误差的期望值在理论上以能量范数和L2范数为界。在第二种方法中,蒙特卡罗方法用于生成随机系数的独立的,相同分布的实现。由此产生的确定性问题可以通过DG方法解决。接下来,获得这些近似解的平均值与精确解的期望值之间的误差的估计值。在几个示例上对蒙特卡洛不连续伽勒金方法进行了数值测试。结果表明,非对称DG方法不受网格和惩罚参数值的影响是稳定的。仅当惩罚参数足够大时,对称和不完整的DG方法才是稳定的。最后,对几种情况与蒙特卡洛有限元法和蒙特卡洛不连续伽勒金法进行了比较。

著录项

  • 作者

    Liu Kun;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号