首页> 外文OA文献 >DeepFruits: A fruit detection system using deep neural networks
【2h】

DeepFruits: A fruit detection system using deep neural networks

机译:DeepFruits:使用深度神经网络的水果检测系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a novel approach to fruit detection using deep convolutional neural networks. The aim is to build an accurate, fast and reliable fruit detection system, which is a vital element of an autonomous agricultural robotic platform; it is a key element for fruit yield estimation and automated harvesting. Recent work in deep neural networks has led to the development of a state-of-the-art object detector termed Faster Region-based CNN (Faster R-CNN). We adapt this model, through transfer learning, for the task of fruit detection using imagery obtained from two modalities: colour (RGB) and Near-Infrared (NIR). Early and late fusion methods are explored for combining the multi-modal (RGB and NIR) information. This leads to a noveludmulti-modal Faster R-CNN model, which achieves state-of-the-art results compared to prior work with the F1 score, which takes into account both precision and recall performances improving from 0.807 to 0.838 for the detection of sweet pepper. In addition to improved accuracy, this approach is also much quicker to deploy for new fruits, as it requires bounding box annotation rather than pixel-level annotation (annotating bounding boxes is approximately an order of magnitude quickerudto perform). The model is retrained to perform the detection of seven fruits, with the entire processudtaking four hours to annotate and train the new model per fruit.
机译:本文提出了一种使用深度卷积神经网络进行水果检测的新方法。目的是建立一个准确,快速和可靠的水果检测系统,这是自主农业机器人平台的重要组成部分;它是估计水果产量和自动收获的关键要素。深度神经网络的最新工作已导致开发了一种称为“基于快速区域的CNN(Faster R-CNN)”的最新对象检测器。通过转移学习,我们将该模型调整为使用从两种模式获得的图像进行水果检测的任务:彩色(RGB)和近红外(NIR)。探索了早期和晚期融合方法,用于组合多模式(RGB和NIR)信息。这导致了一种新颖的 udmulti-modal Faster R-CNN模型,与以前的F1得分相比,该模型可以实现最新的结果,同时考虑了精度和召回性能,从0.807提高到0.838。检测甜椒。除了提高准确性外,此方法还可以更快地部署到新的水果上,因为它需要边界框注释而不是像素级注释(注释边界框执行速度大约快一个数量级)。对该模型进行重新训练以执行7种水果的检测,而整个过程需要花费4个小时来注释和训练每种水果的新模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号