首页> 外文OA文献 >Choosing an appropriate modelling framework for analysing multispecies co-culture cell biology experiments
【2h】

Choosing an appropriate modelling framework for analysing multispecies co-culture cell biology experiments

机译:选择合适的建模框架来分析多物种共培养细胞生物学实验

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In vitro cell biology assays play a crucial role in informing our understanding of the migratory, proliferative and invasive properties of many cell types in different biological contexts. While mono-culture assays involve the study of a population of cells composed of a single celludtype, co-culture assays study a population of cells composed of multiple cell types (or subpopulations of cells). Such co-culture assays can provide more realistic insights into many biological processes including tissue repair, tissue regeneration and malignant spreading. Typically, system parameters, such as motility and proliferation rates, are estimated by calibrating a mathematical or computational model to the observed experimental data. However, parameter estimates canudbe highly sensitive to the choice of model and modelling framework. This observation motivates us to consider the fundamental question of how we can best choose a model to facilitate accurate parameter estimation for a particular assay. In this work we describe three mathematical models ofudmono-culture and co-culture assays that include different levels of spatial detail. We study various spatial summary statistics to explore if they can be used to distinguish between the suitability of each model over a range of parameter space. Our results for mono-culture experiments are promising, in that we suggest two spatial statistics that can be used to direct model choice. However,udco-culture experiments are far more challenging: we show that these same spatial statistics which provide useful insight into mono-culture systems are insuffcient for co-culture systems. Therefore, we conclude that great care ought to be exercised when estimating the parameters of co-culture assays.
机译:体外细胞生物学测定在增进我们对不同生物学背景下许多细胞类型的迁移,增殖和侵袭特性的理解中起着至关重要的作用。虽然单培养分析涉及对由单细胞 udtype组成的细胞群的研究,但共培养分析对由多种细胞类型(或细胞亚群)组成的细胞群进行研究。这样的共培养测定可以提供对许多生物学过程的更现实的见解,包括组织修复,组织再生和恶性扩散。通常,通过对观察到的实验数据校准数学或计算模型来估计系统参数,例如运动性和增殖率。但是,参数估计可能对模型和建模框架的选择非常敏感。这种观察促使我们考虑一个基本问题,即我们如何才能最好地选择一个模型以促进特定测定的准确参数估计。在这项工作中,我们描述了 udmono-culture和co-culture分析的三个数学模型,其中包括不同级别的空间细节。我们研究各种空间汇总统计信息,以探索它们是否可用于在参数空间范围内区分每个模型的适用性。我们的单培养实验结果很有希望,因为我们建议了两个可用于指导模型选择的空间统计。但是, udco-culture实验更具挑战性:我们证明了这些相同的空间统计数据(它们对单一文化系统提供了有用的洞察力)不足以实现co-culture系统。因此,我们得出结论,在估计共培养分析的参数时应格外小心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号