首页> 外文OA文献 >A comparison of finite difference and finite volume methods for solving the space-fractional advection-dispersion equation with variable coefficients
【2h】

A comparison of finite difference and finite volume methods for solving the space-fractional advection-dispersion equation with variable coefficients

机译:变系数空间分数维对流扩散方程的有限差分与有限体积方法的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Transport processes within heterogeneous media may exhibit non- classical diffusion or dispersion which is not adequately described by the classical theory of Brownian motion and Fick’s law. We consider a space-fractional advection-dispersion equation based on a fractional Fick’s law. Zhang et al. [Water Resources Research, 43(5)(2007)] considered such an equation with variable coefficients, which they dis- cretised using the finite difference method proposed by Meerschaert and Tadjeran [Journal of Computational and Applied Mathematics, 172(1):65-77 (2004)]. For this method the presence of variable coef- ficients necessitates applying the product rule before discretising the Riemann–Liouville fractional derivatives using standard and shifted Gru ̈nwald formulas, depending on the fractional order. As an alternative, we propose using a finite volume method that deals directly with the equation in conservative form. Fractionally-shifted Gru ̈nwald formulas are used to discretise the Riemann–Liouville fractional derivatives at control volume faces, eliminating the need for product rule expansions. We compare the two methods for several case studies, highlighting the convenience of the finite volume approach.
机译:异质介质中的传输过程可能表现出非经典的扩散或弥散,这是经典的布朗运动理论和菲克定律无法充分描述的。我们考虑基于分数菲克定律的空间分数对流扩散方程。张等。 [Water Resources Research,43(5)(2007)]考虑了这样一个具有可变系数的方程,并使用Meerschaert和Tadjeran提出的有限差分方法将其离散化[计算与应用数学学报,172(1):65 -77(2004)]。对于这种方法,要使用可变系数,必须先使用乘积法则,然后再根据分数阶使用标准和移位的Grünwald公式离散化黎曼-利维尔分数阶导数。作为替代方案,我们建议使用有限体积方法,以保守形式直接处理方程。分数移位的Grünwald公式用于离散控制体积面上的Riemann-Liouville分数导数,从而不需要乘积规则扩展。我们比较了两种案例研究的两种方法,突出了有限体积方法的便利性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号