首页> 外文OA文献 >Numerical methods for fractional partial differential equations with Riesz space fractional derivatives
【2h】

Numerical methods for fractional partial differential equations with Riesz space fractional derivatives

机译:具有Riesz空间分数阶导数的分数阶偏微分方程的数值方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order αset membership, variant(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order βset membership, variant(0,1) and of order αset membership, variant(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.
机译:在本文中,我们考虑了有限域上具有Riesz空间分数导数(FPDE-RSFD)的分数阶偏微分方程的数值解。考虑了两种类型的FPDE-RSFD:Riesz分数对流扩散方程(RFDE)和Riesz分数对流扩散方程(RFADE)。 RFDE由标准扩散方程式获得,方法是将二阶空间导数替换为αset隶属关系的Riesz分数阶导数,变式(1,2); RFADE由标准对流扩散方程式得到,方法是将一阶空间集替换为一阶和二阶空间导数,其Riesz分数导数分别为βset隶属度(variant(0,1))和αset隶属度阶数(variant(1,2))首先,推导了RFDE和RFADE的解析解其次,提供了三种数值方法来处理Riesz空间分数导数,即L1 / L2逼近法,标准/移位Grünwald方法和矩阵变换法(MTM)。转换为常微分方程组,然后通过线法求解,最后给出数值结果,证明了这三种数值方法的有效性和收敛性。

著录项

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号