首页> 外文期刊>Computers & mathematics with applications >New numerical methods for the Riesz space fractional partial differential equations
【24h】

New numerical methods for the Riesz space fractional partial differential equations

机译:Riesz空间分数阶偏微分方程的新数值方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the numerical solution of the Riesz space fractional diffusion equation and advection-dispersion equation. First, a system of ordinary differential equations is obtained from the above equations with respect to the space variable by using the improved matrix transform method. Furthermore, we use the (2,2) Pade approximation to compute the exponential matrix in the analytic solution of the ordinary differential equation, and get two difference schemes. Second, using the matrix analysis method, we prove that the two difference schemes are unconditionally stable. Finally, some numerical results are given, which demonstrate the effectiveness of the two difference schemes.
机译:在本文中,我们考虑了Riesz空间分数阶扩散方程和对流扩散方程的数值解。首先,通过使用改进的矩阵变换方法,从上述方程中获得关于空间变量的常微分方程组。此外,在常微分方程的解析解中,我们使用(2,2)Pade逼近来计算指数矩阵,并得到两个差分格式。其次,使用矩阵分析方法,我们证明了这两种差分方案是无条件稳定的。最后,给出了一些数值结果,证明了两种差分方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号