首页> 外文OA文献 >Multi-objective mission flight planning in civil unmanned aerial systems
【2h】

Multi-objective mission flight planning in civil unmanned aerial systems

机译:民用无人机系统中的多目标任务飞行计划

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Unmanned Aerial Vehicles (UAVs) are emerging as an ideal platform for a wide range of civil applications such as disaster monitoring, atmospheric observation and outback delivery. However, the operation of UAVs is currently restricted to specially segregated regions of airspace outside of the National Airspace System (NAS). Mission Flight Planning (MFP) is an integral part of UAV operation that addresses some of the requirements (such as safety and the rules of the air) of integrating UAVs in the NAS. Automated MFP is a key enabler for a number of UAV operating scenarios as it aids in increasing the level of onboard autonomy. For example, onboard MFP is required to ensure continued conformance with the NAS integration requirements when there is an outage in the communications link. MFP is a motion planning task concerned with finding a path between a designated start waypoint and goal waypoint. This path is described with a sequence of 4 Dimensional (4D) waypoints (three spatial and one time dimension) or equivalently with a sequence of trajectory segments (or tracks). It is necessary to consider the time dimension as the UAV operates in a dynamic environment. Existing methods for generic motion planning, UAV motion planning and general vehicle motion planning cannot adequately address the requirements of MFP. The flight plan needs to optimise for multiple decision objectives including mission safety objectives, the rules of the air and mission efficiency objectives. Online (in-flight) replanning capability is needed as the UAV operates in a large, dynamic and uncertain outdoor environment. This thesis derives a multi-objective 4D search algorithm entitled Multi- Step A* (MSA*) based on the seminal A* search algorithm. MSA* is proven to find the optimal (least cost) path given a variable successor operator (which enables arbitrary track angle and track velocity resolution). Furthermore, it is shown to be of comparable complexity to multi-objective, vector neighbourhood based A* (Vector A*, an extension of A*). A variable successor operator enables the imposition of a multi-resolution lattice structure on the search space (which results in fewer search nodes). Unlike cell decomposition based methods, soundness is guaranteed with multi-resolution MSA*. MSA* is demonstrated through Monte Carlo simulations to be computationally efficient. It is shown that multi-resolution, lattice based MSA* finds paths of equivalent cost (less than 0.5% difference) to Vector A* (the benchmark) in a third of the computation time (on average). This is the first contribution of the research. The second contribution is the discovery of the additive consistency property for planning with multiple decision objectives. Additive consistency ensures that the planner is not biased (which results in a suboptimal path) by ensuring that the cost of traversing a track using one step equals that of traversing the same track using multiple steps. MSA* mitigates uncertainty through online replanning, Multi-Criteria Decision Making (MCDM) and tolerance. Each trajectory segment is modeled with a cell sequence that completely encloses the trajectory segment. The tolerance, measured as the minimum distance between the track and cell boundaries, is the third major contribution. Even though MSA* is demonstrated for UAV MFP, it is extensible to other 4D vehicle motion planning applications. Finally, the research proposes a self-scheduling replanning architecture for MFP. This architecture replicates the decision strategies of human experts to meet the time constraints of online replanning. Based on a feedback loop, the proposed architecture switches between fast, near-optimal planning and optimal planning to minimise the need for hold manoeuvres. The derived MFP framework is original and shown, through extensive verification and validation, to satisfy the requirements of UAV MFP. As MFP is an enabling factor for operation of UAVs in the NAS, the presented work is both original and significant.
机译:无人驾驶飞机(UAV)逐渐成为各种民用应用(如灾害监测,大气观测和内陆交付)的理想平台。但是,无人机的操作目前仅限于国家空域系统(NAS)以外的特殊隔离的空域区域。任务飞行计划(MFP)是无人机运行不可或缺的一部分,可满足将无人机集成到NAS中的一些要求(例如安全性和空中规则)。自动化MFP是许多UAV操作场景的关键推动因素,因为它有助于提高机载自主性水平。例如,当通信链路中断时,需要板载MFP以确保持续符合NAS集成要求。 MFP是一项运动计划任务,涉及在指定的起始航点和目标航点之间寻找路径。使用4维(4D)航路点(三个空间和一个时间维)序列或等效地使用一系列轨迹段(或航迹)描述此路径。当无人机在动态环境中运行时,有必要考虑时间维度。用于通用运动计划,UAV运动计划和通用车辆运动计划的现有方法不能充分满足MFP的要求。飞行计划需要针对多个决策目标进行优化,包括任务安全目标,空中规则和任务效率目标。由于无人机在大型,动态且不确定的室外环境中运行,因此需要在线(飞行中)重新计划功能。本文基于开创性的A *搜索算法,推导了一种多目标4D搜索算法,称为多步A *(MSA *)。事实证明,MSA *可在给定变量后继运算符(可实现任意航迹角和航迹速度分辨率)的情况下找到最佳(最低成本)路径。此外,它显示出与基于多目标,向量邻域的A *(向量A *,A *的扩展)具有相当的复杂性。变量后继运算符可以在搜索空间上强加一个多分辨率的格结构(这导致更少的搜索节点)。与基于单元分解的方法不同,使用多分辨率MSA *可以确保稳健性。通过蒙特卡洛模拟证明了MSA *的计算效率。结果表明,基于网格的多分辨率MSA *可以在三分之一的计算时间(平均)中找到与Vector A *(基准)等效的成本(差异小于0.5%)。这是这项研究的第一项贡献。第二个贡献是发现具有多个决策目标的计划的累加一致性属性。可加性一致性通过确保使用一个步骤遍历一个轨道的成本等于使用多个步骤遍历同一轨道的成本,从而确保计划者不会产生偏见(这会导致次优路径)。 MSA *通过在线重新计划,多标准决策(MCDM)和容忍度减轻了不确定性。每个轨迹段都使用一个完全包围轨迹段的单元格序列进行建模。公差(以轨迹和单元边界之间的最小距离度量)是第三主要贡献。即使已针对无人机MFP演示了MSA *,它也可以扩展到其他4D车辆运动计划应用程序。最后,研究提出了一种针对MFP的自调度重新计划架构。该体系结构复制了人类专家的决策策略,以满足在线重新计划的时间限制。基于反馈回路,所提出的体系结构在快速,接近最佳的计划和最佳计划之间进行切换,以最大程度地降低保持操纵的需求。派生的MFP框架是原始的,并通过广泛的验证和确认进行显示,以满足无人机MFP的要求。由于MFP是NAS中无人机运行的推动因素,因此提出的工作既新颖又有意义。

著录项

  • 作者

    Wu Paul Pao-Yen;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号