首页> 外文OA文献 >Hopf hypersurfaces in pseudo-Riemannian complex and para-complex space forms
【2h】

Hopf hypersurfaces in pseudo-Riemannian complex and para-complex space forms

机译:伪黎曼复杂和超复杂空间形式的Hopf超曲面

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The study of real hypersurfaces in pseudo-Riemannian complex space forms and para-complex space forms, which are the pseudo-Riemannian generalizations of the complex space forms, is addressed. It is proved that there are no umbilic hypersurfaces, nor real hypersurfaces with parallel shape operator in such spaces. Denoting by J be the complex or para-complex structure of a pseudo-complex or para-complex space form respectively, a non-degenerate hypersurface of such space with unit normal vector field N is said to be Hopf if the tangent vector field JN is a principal direction. It is proved that if a hypersurface is Hopf, then the corresponding principal curvature (the Hopf curvature) is constant. It is also observed that in some cases a Hopf hypersurface must be, locally, a tube over a complex (or para-complex) submanifold, thus generalizing previous results of Cecil, Ryan and Montiel.
机译:讨论了伪黎曼复杂空间形式和超复杂空间形式中的实际超曲面的研究,它们是复杂空间形式的伪黎曼一般化。证明在这样的空间中没有脐带超曲面,也没有具有平行形状算符的实际超曲面。用J分别表示伪复或对复空间形式的复或对复结构,如果正切向量场JN为,则这种具有单元法向向量场N的空间的非退化超曲面称为Hopf。主要方向。证明如果超曲面是霍普夫,则相应的主曲率(霍普夫曲率)是恒定的。还可以观察到,在某些情况下,Hopf超曲面必须局部是复杂(或超复杂)子流形上的管,从而推广了Cecil,Ryan和Montiel的先前结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号