首页> 外文OA文献 >An adaptive finite element/meshless coupled method based on local maximum entropy shape functions for linear and nonlinear problems.
【2h】

An adaptive finite element/meshless coupled method based on local maximum entropy shape functions for linear and nonlinear problems.

机译:基于局部最大熵形状函数的线性和非线性问题的自适应有限元/无网格耦合方法。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, an automatic adaptive coupling procedure is proposed for the finite element method (FEM) and the element-free Galerkin method (EFGM) for linear elasticity and for problems with both material and geometrical nonlinearities. In this new procedure, initially the whole of the problem domain is modelled using the FEM. During an analysis, those finite elements which violate a predefined error measure are automatically converted to an EFG zone. This EFG zone can be further refined by adding nodes, thus avoiding computationally expensive FE remeshing. Local maximum entropy shape functions are used in the EFG zone of the problem domain for two reasons: their weak Kronecker delta property at the boundaries allows straightforward imposition of essential boundary conditions and also provides a natural way to couple the EFG and FE regions compared to the use of moving least squares basis functions. The Zienkiewicz and Zhu error estimation procedure with the superconvergent patch method for strains and stresses recovery is used in the FE region of the problem domain, while the Chung and Belytschko error estimation procedure is used in the EFG region.
机译:针对线性弹性以及材料和几何非线性问题,本文针对有限元方法(FEM)和无元素Galerkin方法(EFGM)提出了一种自动自适应耦合程序。在这个新过程中,最初,整个问题域都是使用FEM建模的。在分析过程中,那些违反预定义误差度量的有限元将自动转换为EFG区域。可以通过添加节点来进一步完善此EFG区域,从而避免了计算上昂贵的FE重新网格化。在问题域的EFG区域中使用局部最大熵形状函数有两个原因:与边界相比,它们在边界处的弱Kronecker delta属性允许直接施加基本边界条件,并且还提供了一种自然的方式来耦合EFG和FE区域使用移动最小二乘法基函数。在问题域的有限元区域中使用具有超收敛补丁方法的Zienkiewicz和Zhu误差估计程序,用于应变和应力恢复,而在EFG区域中使用Chung和Belytschko误差估计程序。

著录项

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号