In this thesis we are mainly concerned with a modification of the classical total variation image inpainting model. This alteration, which leads to a variational problem with linear growth, has been suggested by M. Bildhauer and M. Fuchs and is of interest since it describes inpainting with simultaneous denoising, i.e., we jointly reconstruct the region of the image for which data are missing or inaccessible and denoise the generated image on the entire domain. First numerical experiments in collaboration with J. Weickert have revealed that the above modification is numerically comparable to the standard total variation image inpainting model with the advantage of a comprehensive existence and regularity theory of the corresponding solutions. The main focus of this thesis lies on establishing such a theory for any dimension together with arbitrary codimension, i.e., vector-valued images are included in our investigations.More precisely we first show existence of generalized minimizers (in a suitable sense) and pass to the associated dual problem. In this context we prove new density results for functions of bounded variation and for Sobolev functions. Afterwards we investigate the regularity behavior of generalized minimizers.As a slight advancement we moreover study a special non-autonomous variant of the above variational problem in the context of the denoising of images for which we establish existence and regularity results of generalized minimizers.
展开▼
机译:在本文中,我们主要关注经典的全变化图像修复模型的修改。 M. Bildhauer和M. Fuchs提出了这种导致线性增长的变异问题的方法,这种变化引起人们的兴趣,因为它描述了同时去噪的修补图像,即我们共同重建了图像区域。丢失或无法访问,并在整个域上对生成的图像进行降噪。与J. Weickert合作进行的首次数值实验表明,上述修改在数值上可与标准的总变化图像修复模型进行比较,其优点是具有相应解决方案的全面存在和规律性理论。本论文的主要重点在于建立任意维数和任意维数的理论,即矢量值图像包括在我们的研究中。更确切地说,我们首先显示广义极小值的存在(在适当的意义上)并传递给相关的双重问题。在这种情况下,我们证明了有界变化函数和Sobolev函数的新密度结果。随后,我们研究了广义最小化子的正则性行为。作为一个略微的进步,我们还在图像去噪的背景下研究了上述变分问题的一个特殊的非自治变体,为此我们建立了广义最小化子的存在性和正则性结果。
展开▼