首页> 美国卫生研究院文献>Springer Open Choice >An existence-uniqueness theorem and alternating contraction projection methods for inverse variational inequalities
【2h】

An existence-uniqueness theorem and alternating contraction projection methods for inverse variational inequalities

机译:逆变分不等式的存在唯一性定理和交替收缩投影方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Let C be a nonempty closed convex subset of a real Hilbert space H with inner product ,, and let f:HH be a nonlinear operator. Consider the inverse variational inequality (in short, IVI(C,f)) problem of finding a point ξH such that f(ξ)C,ξ,vf(ξ)0,vC. In this paper, we prove that IVI(C,f) has a unique solution if f is Lipschitz continuous and strongly monotone, which essentially improves the relevant result in (Luo and Yang in Optim. Lett. 8:1261–1272, ). Based on this result, an iterative algorithm, named the alternating contraction projection method (ACPM), is proposed for solving Lipschitz continuous and strongly monotone inverse variational inequalities. The strong convergence of the ACPM is proved and the convergence rate estimate is obtained. Furthermore, for the case that the structure of C is very complex and the projection operator PC is difficult to calculate, we introduce the alternating contraction relaxation projection method (ACRPM) and prove its strong convergence. Some numerical experiments are provided to show the practicability and effectiveness of our algorithms. Our results in this paper extend and improve the related existing results.
机译:令C为实际希尔伯特空间的非空闭合凸子集 H 和内部产品 ,然后让 f H H 成为非线性算子。考虑逆变分不等式(简而言之, IVI C f )找到点的问题 ξ H 使得 f ξ C ξ v f ξ < mo maxsize =“ 2.4ex” minsize =“ 2.4ex” Stretchy =“ true”>) 〉 < / mo> 0 v C 在本文中,我们证明了<数学xmlns:mml =“ http://www.w3.org/1998/Math/MathML” id =“ M14”溢出=“ scroll”> IVI C f 具有唯一的解决方案f是Lipschitz连续且强烈单调的,实质上改善了(Optim中的Lu和Yang)的相关结果。来吧8:1261–1272,)。基于此结果,提出了一种迭代算法,称为交替收缩投影投影法(ACPM),用于求解Lipschitz连续和强单调逆变分不等式。证明了ACPM的强收敛性,并获得了收敛速率估计。此外,对于C的结构非常复杂且投影运算符 P C 难以计算,我们引入了交替收缩弛豫投影法(ACRPM)并证明了其强收敛性。提供了一些数值实验,以证明我们算法的实用性和有效性。本文的研究结果扩展并改进了相关的现有结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号