...
首页> 外文期刊>Journal of inequalities and applications >An existence-uniqueness theorem and alternating contraction projection methods for inverse variational inequalities
【24h】

An existence-uniqueness theorem and alternating contraction projection methods for inverse variational inequalities

机译:逆变分不等式的存在唯一性定理和交替收缩投影方法

获取原文

摘要

Let C be a nonempty closed convex subset of a real Hilbert space (mathcal{H}) with inner product (langle cdot , cdot angle ), and let (f: mathcal{H}ightarrow mathcal{H}) be a nonlinear operator. Consider the inverse variational inequality (in short, (operatorname{IVI}(C,f))) problem of finding a point (xi ^{*}in mathcal{H}) such that $$ figl(xi ^{*}igr)in C, quad igllangle xi ^{*}, v-f igl(xi ^{*}igr)igrangle geq 0, quad orall vin C. $$ In this paper, we prove that (operatorname{IVI}(C,f)) has a unique solution if f is Lipschitz continuous and strongly monotone, which essentially improves the relevant result in (Luo and Yang in Optim. Lett. 8:1261a??1272, 2014). Based on this result, an iterative algorithm, named the alternating contraction projection method (ACPM), is proposed for solving Lipschitz continuous and strongly monotone inverse variational inequalities. The strong convergence of the ACPM is proved and the convergence rate estimate is obtained. Furthermore, for the case that the structure of C is very complex and the projection operator (P_{C}) is difficult to calculate, we introduce the alternating contraction relaxation projection method (ACRPM) and prove its strong convergence. Some numerical experiments are provided to show the practicability and effectiveness of our algorithms. Our results in this paper extend and improve the related existing results.KeywordsInverse variational inequality??Variational inequality??Lipschitz continuous??Strongly monotone??MSC47J20??90C25??90C30??90C52??1 IntroductionLet (mathcal{H}) be a real Hilbert space with inner product (langle cdot ,cdot angle ) and induced norm (Vert cdot Vert ). Recall that the metric projection operator of a nonempty closed convex subset C of (mathcal{H}), (P_{C}:mathcal{H}ightarrow C), is defined by $$ P_{C}(x):=rg min_{yin C} Vert x-y Vert ^{2}, quad xin mathcal{H}. $$Let C be a nonempty closed convex subset of (mathcal{H}), and let (F: Cightarrow mathcal{H}) be a nonlinear operator. The so-called variational inequality (in short, (operatorname{VI}(C,F))) problem is to find a point (u^{*}in C) such that $$ igllangle Figl(u^{*}igr),v-u^{*}igrangle geq 0, quad orall vin C. $$ (1) The variational inequalities have many important applications in different fields and have been studied intensively, see [1, 2, 4, 7, 8, 9, 10, 11, 12, 13, 14, 17, 24, 26, 27, 31, 32, 36, 38, 39, 40, 42, 43, 44, 45, 46], and the references therein.It is easy to verify that (u^{*}) solves (operatorname{VI}(C,F)) if and only if (u^{*}) is a solution of the fixed point equation $$ u^{*}=P_{C}(I-lambda F)u^{*}, $$ (2) where I is the identity operator on (mathcal{H}) and ?? is an arbitrary positive constant.A??class of variant variational inequalities is the inverse variational inequality (in short (operatorname{IVI}(C,f))) problem [19], which is to find a point (xi ^{*}in mathcal{H}) such that $$ figl(xi ^{*}igr)in C, quad igllangle xi ^{*}, v-figl(xi ^{*}igr)igrangle geq 0, quad orall vin C, $$ (3) where (f: mathcal{H}ightarrow mathcal{H}) is a nonlinear operator. The inverse variational inequalities are also widely used in many different fields such as the transportation system operation, control policies, and the electrical power network management [20, 22, 41].Now we give a brief overview of the properties and algorithms of inverse variational inequalities. For the properties of inverse variational inequalities, Han et al. [16] proved that the solution set of any monotone inverse variational inequality is convex. He [18] proved that the inverse variational inequality (operatorname{IVI}(C,f)) is equivalent to the following projection equation: $$ figl(xi ^{*}igr)=P_{C}igl(figl(xi ^{*} igr)-eta xi ^{*}igr), $$ where ?2 is an arbitrary positive constant. Consequently, the problem (operatorname{IVI}(C,f)) equals the fixed point problem of the mapping $$ T:=I-f+P_{C}(f-eta I). $$The following lemma reveals the intrinsic relationship between variational inequalities and inverse variational inequalities.
机译:令C为实希尔伯特空间( mathcal {H} )的非空封闭凸子集,其内积为( langle cdot, cdot rangle ),并令(f: mathcal {H} rightarrow mathcal {H} )是非线性运算符。考虑在变量{H} 中找到点( xi ^ {*} )的逆变分不等式(简称为( operatorname {IVI}(C,f)))问题, f bigl( xi ^ {*} bigr) in C, quad bigl langle xi ^ {**,vf bigl( xi ^ {** bigr) bigr rangle geq 0 , quad forall v in C. $$本文证明,如果f为Lipschitz连续且强烈单调,则( operatorname {IVI}(C,f))具有唯一解,这实质上改善了(Luo and Yang in Optim。Lett。8:1261a ?? 1272,2014)中的相关结果。基于此结果,提出了一种迭代算法,称为交替收缩投影投影法(ACPM),用于求解Lipschitz连续和强单调逆变分不等式。证明了ACPM的强收敛性,并获得了收敛速率估计。此外,在C结构非常复杂且难以计算投影算子(P_ {C} )的情况下,我们引入了交替收缩松弛投影方法(ACRPM)并证明了其强收敛性。提供了一些数值实验,以证明我们算法的实用性和有效性。关键词逆变分不等式;变分不等式; Lipschitz连续式;强单调; MSC47J20; 90C25; 90C30; 90C52; 1引言( mathcal {H } )是带有内积( langle cdot, cdot rangle )和归纳范数( Vert cdot Vert )的真实希尔伯特空间。回想一下,( mathcal {H} ),(P_ {C}: mathcal {H} rightarrow C )的非空封闭凸子集C的度量投影运算符由$$ P_ {C }(x):= arg min_ {y in C} Vert xy Vert ^ {2}, quad x in mathcal {H}。 $$让C为( mathcal {H} )的非空封闭凸子集,并让(F:C rightarrow mathcal {H} )为非线性算子。所谓的变分不等式(简称( operatorname {VI}(C,F)))问题是找到一个点(u ^ {*} 在C )使得$$ bigl 角F bigl(u ^ {*} bigr),vu ^ {** bigr rangle geq 0, quad forall v in C. $$(1)变分不等式在不同方面有许多重要应用领域,并且已经过深入研究,请参见[1、2、4、7、8、9、10、11、12、13、14、17、24、26、27、31、32、36、38、39、40 、、 42、43、44、45、46,[]和其中的引用。很容易验证(u ^ {*} )是否可以解析( operatorname {VI}(C,F))如果(u ^ {*} )是不动点方程的解$$ u ^ {*} = P_ {C}(I- lambda F)u ^ {*},$$(2)其中I是( mathcal {H} )和上的身份运算符?是一个任意正常数。一类变分不等式是逆变分不等式(简称( operatorname {IVI}(C,f)))问题[19],即找到一个点( xi ^ {*} in mathcal {H} ),使得$$ f bigl( xi ^ {** bigr) in C, quad bigl langle xi ^ {**,vf bigl( xi ^ {*} bigr) bigr rangle geq 0, quad forall v in C,$$(3)其中(f: mathcal {H} rightarrow mathcal {H } )是非线性运算符。逆变分不等式还广泛用于交通运输系统的运行,控制策略和电力网络管理等许多不同领域[20,22,41]。现在,我们简要概述逆变分的性质和算法。不平等。对于逆变分不等式的性质,Han等。 [16]证明任何单调逆变分不等式的解集都是凸的。他[18]证明了逆变分不等式( operatorname {IVI}(C,f))等效于以下投影方程:$$ f bigl( xi ^ {** bigr)= P_ { C} bigl(f bigl( xi ^ {*} bigr)- beta xi ^ {*} bigr),$$其中?2是任意正常数。因此,问题( operatorname {IVI}(C,f))等于映射$$ T:= I-f + P_ {C}(f- beta I)的不动点问题。 $$以下引理揭示了变分不等式和逆变分不等式之间的内在联系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号