首页> 外文OA文献 >Least-squares methods for identifying biochemical regulatory networks from noisy measurements.
【2h】

Least-squares methods for identifying biochemical regulatory networks from noisy measurements.

机译:从噪声测量中识别生化调节网络的最小二乘法。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the problem of identifying the dynamic interactions in biochemical networks from noisy experimental data. Typically, approaches for solving this problem make use of an estimation algorithm such as the well-known linear Least-Squares (LS) estimation technique. We demonstrate that when time-series measurements are corrupted by white noise and/or drift noise, more accurate and reliable identification of network interactions can be achieved by employing an estimation algorithm known as Constrained Total Least Squares (CTLS). The Total Least Squares (TLS) technique is a generalised least squares method to solve an overdetermined set of equations whose coefficients are noisy. The CTLS is a natural extension of TLS to the case where the noise components of the coefficients are correlated, as is usually the case with time-series measurements of concentrations and expression profiles in gene networks.
机译:我们考虑从嘈杂的实验数据中识别生化网络中动态相互作用的问题。通常,用于解决此问题的方法利用估计算法,例如众所周知的线性最小二乘(LS)估计技术。我们证明,当时间序列测量值因白噪声和/或漂移噪声而损坏时,可以通过采用称为约束总最小二乘(CTLS)的估计算法来实现网络交互的更准确和可靠的标识。总最小二乘(TLS)技术是一种通用的最小二乘法,用于解决系数不确定的方程组的确定问题。 CTLS是TLS的自然扩展,在系数的噪声成分相互关联的情况下(如基因网络中浓度和表达谱的时间序列测量通常是这种情况)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号