首页> 外文期刊>IEEE Transactions on Control Systems Technology >Point-Based Methodology to Monitor and Control Gene Regulatory Networks via Noisy Measurements
【24h】

Point-Based Methodology to Monitor and Control Gene Regulatory Networks via Noisy Measurements

机译:基于点的方法,通过噪声测量来监视和控制基因调控网络

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a methodology to monitor and control gene regulatory networks (GRNs) via noisy measurements in an infinite observation space. Toward this end, we employ the partially observed Boolean dynamical system (POBDS) signal model. The proposed methodology consists of offline and online steps. In the offline step, a family of point-based methods is applied to the POBDS model to gather the necessary control policy prior to the online (execution) step. This is accomplished by developing efficient backup and belief expansion processes to make the computation scale with the log of the number of states, as opposed to the complexity of existing point-based methods, which grows with the number of states. In the online step, simultaneous monitoring and control is achieved by a one-step look-ahead search procedure using the optimal state estimation algorithm for the POBDS model, known as the Boolean Kalman filter (BKF), as well as the information gathered in the offline step. The online one-step look-ahead process confers robustness to changes in system dynamics, possibility of starting the execution process before the completion of the offline step. The use of the BKF for simultaneous monitoring and control during the online stage can be key in assessing possible side effects of intervention. The performance of the proposed methodology is investigated through a comprehensive set of numerical experiments using synthetic gene expression data generated from a melanoma GRN.
机译:本文提出了一种通过在无限观察空间中进行噪声测量来监视和控制基因调控网络(GRN)的方法。为此,我们采用了部分观测的布尔动力系统(POBDS)信号模型。拟议的方法包括离线和在线步骤。在脱机步骤中,将一系列基于点的方法应用于POBDS模型,以在进行联机(执行)步骤之前收集必要的控制策略。这是通过开发有效的备份和置信度扩展过程来实现的,从而使计算规模随状态数的对数而增加,这与现有的基于点的方法的复杂性不同,后者随状态数的增长而增加。在在线步骤中,通过使用POBDS模型的最佳状态估计算法(称为布尔卡尔曼滤波器(BKF))的最佳状态估计算法,通过一步前瞻搜索过程来实现同时监视和控制,以及在离线步骤。在线单步前瞻过程可增强系统动力学的稳定性,并有可能在离线步骤完成之前启动执行过程。在在线阶段同时使用BKF进行监视和控制可能是评估干预措施可能产生的副作用的关键。通过使用从黑色素瘤GRN生成的合成基因表达数据的一组综合数值实验,研究了所提出方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号