首页> 外文期刊>IEEE Transactions on Control Systems Technology >Point-Based Methodology to Monitor and Control Gene Regulatory Networks via Noisy Measurements
【24h】

Point-Based Methodology to Monitor and Control Gene Regulatory Networks via Noisy Measurements

机译:基于点的方法通过嘈杂的测量监测和控制基因监管网络

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a methodology to monitor and control gene regulatory networks (GRNs) via noisy measurements in an infinite observation space. Toward this end, we employ the partially observed Boolean dynamical system (POBDS) signal model. The proposed methodology consists of offline and online steps. In the offline step, a family of point-based methods is applied to the POBDS model to gather the necessary control policy prior to the online (execution) step. This is accomplished by developing efficient backup and belief expansion processes to make the computation scale with the log of the number of states, as opposed to the complexity of existing point-based methods, which grows with the number of states. In the online step, simultaneous monitoring and control is achieved by a one-step look-ahead search procedure using the optimal state estimation algorithm for the POBDS model, known as the Boolean Kalman filter (BKF), as well as the information gathered in the offline step. The online one-step look-ahead process confers robustness to changes in system dynamics, possibility of starting the execution process before the completion of the offline step. The use of the BKF for simultaneous monitoring and control during the online stage can be key in assessing possible side effects of intervention. The performance of the proposed methodology is investigated through a comprehensive set of numerical experiments using synthetic gene expression data generated from a melanoma GRN.
机译:本文提出了一种通过在无限观察空间中通过嘈杂测量监测和控制基因调节网络(GRNS)的方法。朝向此结束,我们采用部分观察到的布尔动力系统(POBDS)信号模型。所提出的方法包括离线和在线步骤。在离线步骤中,将基于点的方法族应用于POBDS模型,以在线(执行)步骤之前收集必要的控制策略。这是通过开发有效的备份和信念扩展过程来实现的,以使计算比例与状态的数量的日志相反,而不是与现有的基于点的方法的复杂性,这与状态的数量一起增长。在在线步骤中,通过使用POBDS模型的最佳状态估计算法来实现同时监控和控制,称为Boolean Kalman滤波器(BKF)以及收集的信息离线步骤。在线一步的远程前瞻过程赋予系统动态更改的稳健性,在完成离线步骤之前启动执行过程的可能性。在在线阶段使用BKF同时监测和控制可以是评估干预可能副作用的关键。通过使用来自黑色素瘤GN产生的合成基因表达数据,通过全面的数值实验来研究所提出的方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号