首页> 外文OA文献 >Aerodynamic response of a hovering rotor to ramp change in pitch input
【2h】

Aerodynamic response of a hovering rotor to ramp change in pitch input

机译:悬停转子对桨距输入的坡度变化的气动响应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Under transient conditions, a helicopter rotor generates a complex, time-dependent pattern of shed and trailed vorticity in its wake that has profound effects on its loading. To examine these effects, the response of a two-bladed hovering rotor to a ramp change in collective pitch is investigated using three different computational approaches. Solutions obtained using a Compressible Reynolds Averaged Navier-Stokes approach are compared to results obtained from lifting-line theory coupled to an Eulerian Vorticity Transport Model, and from a simple single-state dynamic inflow model. The different numerical approaches yield very similar predictions of the thrust response of the rotor to ramp changes in collective pitch, as long as the ramp rates are small. This suggests that the basic underlying flow physics is properly represented by all the approaches. For more rapid ramp rates, an additional delay in the aerodynamic response of the rotor, that is related to the finite extent of the wake during its early history, is predicted by the Navier-Stokes and Vorticity Transport approaches. Even though the evolution of the wake of the rotor is strongly three dimensional and highly unsteady, the predictions of the Navier-Stokes and lifting-line models agree very closely as long as the blades of the rotor do not stall. In the pre-stall regime, a quasi two-dimensional representation of the blade aerodynamics thus appears adequate for predicting the performance of such systems even under highly transient conditions. When flow separation occurs, the resulting three dimensionality of the blade aerodynamics forces the predictions of the Navier-Stokes and lifting-line approaches to diverge, however. The characterization of the wake interactions and stall propagation mechanisms that are presented in this study offers some insight into the fundamental fluid dynamic mechanisms that govern the transient aerodynamic response of a rotor to control inputs, and provides some quantication of the limits of applicability of some popular current approaches to rotor aerodynamic analysis.
机译:在瞬态条件下,直升机旋翼在尾流后会产生复杂的,随时间变化的脱落和尾随涡度模式,这对其载荷产生深远影响。为了检查这些影响,使用三种不同的计算方法研究了两叶片悬停转子对总螺距斜坡变化的响应。将使用可压缩雷诺平均Navier-Stokes方法获得的解与从结合了欧拉涡度传输模型的提升线理论和简单的单状态动态流入模型获得的结果进行比较。只要斜率很小,不同的数值方法就可以得出非常相似的转子推力响应对总螺距斜率变化的预测。这表明所有方法都可以正确地代表基本的基础流动物理学。为了获得更快的斜率,通过Navier-Stokes和涡流传输方法可以预测到转子的空气动力学响应会产生额外的延迟,这与尾流在其早期历史中的有限程度有关。即使转子尾流的变化是很强的三维并且非常不稳定,但是只要转子的叶片不会失速,Navier-Stokes模型和提升线模型的预测就会非常一致。因此,在失速前状态下,叶片空气动力学的准二维表示似乎足以预测此类系统的性能,即使在高度瞬态条件下也是如此。当发生气流分离时,叶片空气动力学的三维效果将迫使Navier-Stokes和升力线方法的预测有所分歧。这项研究中介绍的尾流相互作用和失速传播机制的表征,使人们对控制转子对输入的瞬态空气动力响应的基本流体动力学机制有一定的了解,并对一些流行的适用范围进行了量化。当前转子空气动力学分析的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号