首页> 外文学位 >Computational investigation of micro-scale coaxial rotor aerodynamics in hover.
【24h】

Computational investigation of micro-scale coaxial rotor aerodynamics in hover.

机译:悬停时微型同轴转子空气动力学的计算研究。

获取原文
获取原文并翻译 | 示例

摘要

In this work, a compressible Reynolds-Averaged Navier Stokes (RANS) solver is extended to investigate the aerodynamics of a micro-scale coaxial rotor configuration in hover. This required the following modifications to the solver: implementation of a time-accurate low Mach preconditioner, implementation of a sliding mesh interface boundary condition, improvements in the grid connectivity and parallelization of the code.;First, an extensive validation study on the prediction capability of the solver is performed on a hovering micro-scale single rotor, for which performance data and wake characteristics have been measured experimentally. The thrust and power are reasonably well predicted for different leading and trailing geometries. Blunt leading edge geometries show poorer performance compared to the sharp leading edge geometries; the simulations show that this is mainly because of the large pressure drag acting at the blunt front. The tip vortex trajectory and velocity profiles are also well captured. The predicted swirl velocities in the wake for the micro-rotor are found to be significantly larger as compared to those for a full-scale rotor, which could be one of the reasons for additional power loss in the smaller scale rotors. The use of twist and taper is studied computationally and is seen to improve the performance of micro-rotor blades.;Next, the solver is applied to simulate the aerodynamics of a full-scale coaxial rotor configuration in hover, for which performance data is available from experiments. The global quantities such as thrust and power are predicted reasonably well. In the torque trimmed situation, the top rotor shares significant percentage of the total thrust at lower thrust levels, which decreases to about 55% of the total thrust at higher thrust values. The simulations reveal that the interaction between the rotor systems is seen to generate significant impulses in the instantaneous thrust and power. The characteristic signature of this impulse is explained in terms of the blade thickness effect and loading effect, as well as blade-vortex interactions for the bottom rotor (wake effect).;Finally, the RANS solver is applied to investigate the aerodynamics of a micro-scale coaxial rotor configuration in hover. The overall performance is well predicted. The interaction between the rotor systems is again seen to generate 3--8% fluctuation in the instantaneous thrust and power. The wake effect in the simulation is seen to be very prominent and the phasing of the impingement of the tip vortex from the top rotor upon the bottom rotor plays a significant role in the amount of unsteadiness on the bottom rotor. Interaction of the top rotor vortex and inboard sheet with the bottom rotor results in significant shedding on the bottom rotor blade, and this is believed to be caused by the of sharp leading edge geometry. Significant blade-vortex and vortex-vortex interactions are observed for coaxial systems.
机译:在这项工作中,扩展了可压缩的雷诺平均Navier Stokes(RANS)求解器,以研究悬停时微型同轴转子配置的空气动力学特性。这需要对求解器进行以下修改:实现时间精确的低马赫预处理器,实现滑动网格接口边界条件,改进网格连接性和代码并行化;首先,对预测能力进行广泛的验证研究解算器的求解是在微动的单转子上进行的,已通过实验测量了性能数据和尾流特性。对于不同的前导几何和尾随几何,可以合理地预测推力和功率。与锋利的前沿几何形状相比,钝的前沿几何形状表现出较差的性能;仿真表明,这主要是由于作用在钝顶上的压力大。尖端涡旋轨迹和速度分布也被很好地捕获。发现与全尺寸转子相比,微转子尾流中的预计涡流速度明显更大,这可能是较小尺寸转子中额外功率损耗的原因之一。通过计算研究锥度和锥度的使用,可以改善微转子叶片的性能。接下来,将求解器应用于悬停时的全尺寸同轴转子配置的空气动力学仿真,可获得性能数据从实验中可以很好地预测诸如推力和功率之类的全球数量。在减小转矩的情况下,顶部转子在较低推力水平下占总推力的很大百分比,在较高推力值下下降至总推力的约55%。仿真表明,转子系统之间的相互作用被认为会在瞬时推力和功率中产生很大的脉冲。通过叶片厚度效应和载荷效应以及底部转子的叶片涡旋相互作用(尾流效应)来解释这种脉冲的特征。最后,将RANS求解器用于研究微型空气动力学特性。悬停时可缩放比例的同轴转子配置。整体性能可以很好地预测。再次可以看出,转子系统之间的相互作用会在瞬时推力和功率中产生3--8%的波动。在模拟中的尾流效应非常明显,并且从顶部转子到底部转子的尖端涡旋撞击的相位在底部转子的不稳定程度中起着重要作用。顶部转子涡流和内侧板与底部转子的相互作用导致底部转子叶片上的明显脱落,这被认为是由锋利的前缘几何形状引起的。对于同轴系统,观察到了显着的叶片涡旋和涡旋涡旋相互作用。

著录项

  • 作者

    Lakshminarayan, Vinod K.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 291 p.
  • 总页数 291
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

  • 入库时间 2022-08-17 11:37:41

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号