首页> 外文期刊>Journal of Aircraft >Computational Investigation of Microscale Coaxial-Rotor Aerodynamics in Hover
【24h】

Computational Investigation of Microscale Coaxial-Rotor Aerodynamics in Hover

机译:悬停微尺度同轴转子空气动力学的计算研究

获取原文
获取原文并翻译 | 示例
       

摘要

In this work, a compressible Reynolds-averaged Navier–Stokes solver is used to investigate the aerodynamics of anmicroscale coaxial-rotor configuration in hover, to evaluate the predictive capability of the computational approachnand to characterize the unsteadiness in the aerodynamic flowfield of the microscale coaxial systems. The overallnperformance is well-predicted for a range of rpm and rotor spacing. As the rotor spacing increases, the top-rotornthrust increases and the bottom-rotor thrust decreases, while the total thrust remains fairly constant. The thrustsnapproach a constant value at very large rotor spacing. Top rotor contributes about 55%of the total thrust at smallernrotor spacing, which increases to about 58% at the largest rotor separation. The interaction between the rotornsystems is seen to generate significant impulses in the instantaneous thrust and power.Unsteadiness ismainly causedndue to blade loading and wake effect. Additional high-frequency unsteadiness was also seen due to shedding near thentrailing edge. The phasing of the top vortex impingement upon the bottomrotor plays a significant role in the amountnof unsteadiness for the bottom rotor. Interaction of the top-rotor tip vortex and inboard sheet with the bottom rotornresults in a highly three-dimensional shedding on the upper surface of the blade in the outboard region and a two-ndimensional shedding on the lower surface at the inboard portion of the blade. The wake of the top rotor contractsnfaster compared with that of the bottom rotor because of the vortex–vortex interaction. Further, the top-rotor wakenconvects vertically down at a faster rate due to increased inflow.
机译:在这项工作中,使用可压缩的雷诺平均Navier-Stokes求解器研究悬停时微型同轴转子配置的空气动力学,评估计算方法的预测能力,并表征微型同轴系统的气动流场的不稳定。对于rpm和转子间距的范围,可以很好地预测整体性能。随着转子间距的增加,上转子推力增加而下转子推力减小,而总推力保持相当恒定。在非常大的转子间距处,推力接近恒定值。顶部转子在较小的转子间距下占总推力的约55%,在最大的转子间距处增加到约58%。转子系统之间的相互作用被认为会在瞬时推力和功率上产生明显的脉冲。不稳定的主要原因是叶片载荷和尾流效应。由于在后缘附近脱落,还观察到了额外的高频不稳定。底部旋翼上的顶部旋涡撞击的相位在底部旋翼的不稳定量中起着重要作用。顶部转子尖端涡旋和内侧板与底部转子的相互作用导致外侧区域中叶片上表面的高度三维脱落,而叶片内侧部分中下部表面的二维高脱落。 。由于涡旋相互作用,顶部转子的尾流比底部转子的尾流收缩更快。此外,由于流量增加,上旋翼尾流以更快的速度垂直向下对流。

著录项

  • 来源
    《Journal of Aircraft》 |2010年第3期|p.940-955|共16页
  • 作者单位

    University of Maryland, College Park, MD 20742;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 23:06:14

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号