首页> 外文OA文献 >Behavior-Based SSVEP Hierarchical Architecture for Telepresence Control of Humanoid Robot to Achieve Full-Body Movement
【2h】

Behavior-Based SSVEP Hierarchical Architecture for Telepresence Control of Humanoid Robot to Achieve Full-Body Movement

机译:基于行为的SSVEP分层体系结构,可实现人形机器人的临场感控制

摘要

The challenge to telepresence control a humanoid robot through a steady-state visual evoked potential (SSVEP) based model is to rapidly and accurately control full-body movement of the robot because a subject has to synchronously recognize the complex natural environments based on live video feedback and activate the proper mental states by targeting the visual stimuli. To mitigate this problem, this paper presents a behavior-based hierarchical architecture, which coordinates a large number of robot behaviors using only the most effective five stimuli. We defined and implemented fourteen robot behaviors for motion control and object manipulation, which were encoded through the visual stimuli of SSVEPs, and classified them into four behavioral sets. We proposed switch mechanisms in the hierarchical architecture to coordinate these behaviors and control the full-body movement of a NAO humanoid robot. To improve operation performance, we investigated the individual sensitivities of visual stimuli and allocated the stimuli targets according to frequency-responsive properties of individual subjects. We compared different types of walking strategies. The experimental results showed that the behavior-based SSVEP hierarchical architecture enabled the humanoid robot to complete an operation task, including navigating to an object and picking the object up with a fast operation time and a low chance of collision in an environment cluttered with obstacles.
机译:通过基于稳态视觉诱发电位(SSVEP)的模型来远程呈现控制类人机器人的挑战在于,快速,准确地控制机器人的全身运动,因为对象必须基于实时视频反馈来同步识别复杂的自然环境并通过瞄准视觉刺激来激活适当的精神状态。为了缓解此问题,本文提出了一种基于行为的分层体系结构,该体系结构仅使用最有效的五个刺激来协调大量机器人行为。我们定义和实现了用于运动控制和对象操纵的十四种机器人行为,这些行为通过SSVEP的视觉刺激进行编码,并将它们分为四个行为集。我们提出了层次结构中的开关机制,以协调这些行为并控制NAO人形机器人的全身运动。为了提高操作性能,我们研究了视觉刺激的个体敏感性,并根据个体受试者的频率响应特性分配了刺激目标。我们比较了不同类型的步行策略。实验结果表明,基于行为的SSVEP分层体系结构使类人机器人能够完成操作任务,包括导航到对象并在障碍物拥挤的环境中以快速的操作时间和较低的碰撞机会拾取对象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号