首页> 外文OA文献 >Improving efficiency with orthogonal exploration for online robotic assembly parameter optimization
【2h】

Improving efficiency with orthogonal exploration for online robotic assembly parameter optimization

机译:通过正交探索提高效率,以在线进行机器人装配参数优化

摘要

In this paper, an online robotic assembly parameter optimization method is developed, this method make industrial robots can assemble workpiece from unskilled to skilled just like human's learning behavior. With the development of the force sensor technology and force control technology, the industrial robots are used in high precision assembly tasks which are more complicated. In order to ensure the efficiency and success rate of assembly, it is necessary to select the appropriate assembly parameters, this problem is called robotic assembly parameters optimization. The traditional solutions are used by artificial methods, a lot of experiments are carried out to get the optimal parameters, which are very time-consuming and laborious. Especially when the production line changes, using the traditional solutions have to do heavy experiments again, it can't meet the requirements of today's flexible manufacturing requirements. This paper presents an online robotic assembly parameter optimization method, which is called Gaussian Process Regression surrogated Bayesian Optimization Algorithm based on the Orthogonal Exploration (OE-GPRBOA), this method can liberate the labor, does not require artificial participation. The algorithm can optimize the parameters autonomously, finally find the optimal parameters for robotic assembly. For GPR is suitable for processing high dimension, small size of sample and nonlinear complex regression problems, the proposed OE-GPRBOA method can be used for various assembly tasks. In this paper, peg-in-hole assembly experiments are performed. The proposed method also compared with design of experiments (DOE) method and GPRBOA method. Experimental results show that, the proposed OE-GPRBOA method has more efficiency to find the optimal assembly parameters, this method can generate big economic impact.
机译:本文开发了一种在线机器人装配参数优化方法,该方法使工业机器人可以像人类的学习行为一样,将非熟练工人组装成熟练工人。随着力传感器技术和力控制技术的发展,工业机器人被用于更复杂的高精度装配任务。为了确保组装的效率和成功率,有必要选择合适的组装参数,此问题称为机器人组装参数优化。传统的解决方案是通过人工方法来进行的,为了获得最佳参数需要进行大量的实验,这非常费时费力。尤其是当生产线发生变化时,使用传统解决方案必须再次进行大量实验,它无法满足当今灵活制造要求的要求。本文提出了一种基于正交探索的在线机器人装配参数优化方法,即高斯过程回归代理贝叶斯优化算法(OE-GPRBOA),该方法可以解放劳动,不需要人工参与。该算法可以自主优化参数,最终找到机器人装配的最佳参数。由于GPR适用于处理高维,小尺寸样本和非线性复杂回归问题,因此建议的OE-GPRBOA方法可用于各种组装任务。在本文中,进行了钉入孔组装实验。该方法还与实验设计方法(DOE)和GPRBOA方法进行了比较。实验结果表明,所提出的OE-GPRBOA方法具有更高的效率来寻找最优的装配参数,该方法可以产生较大的经济影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号