首页> 外文OA文献 >A non-linear Model for Predicting Tip Position of a PliableudRobot Arm Segment Using Bending Sensor Data
【2h】

A non-linear Model for Predicting Tip Position of a PliableudRobot Arm Segment Using Bending Sensor Data

机译:预测柔性 ud尖端位置的非线性模型使用弯曲传感器数据的机器人手臂段

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Using pliable materials for the construction of robot bodies presents new and interesting challenges forudthe robotics community. Within the EU project entitled STIFFness controllable Flexible & Learnable manipulatorudfor surgical Operations (STIFF-FLOP), a bendable, segmented robot arm has been developed. The exterior of theudarm is composed of a soft material (silicone), encasing an internal structure that contains air-chamber actuatorsudand a variety of sensors for monitoring applied force, position and shape of the arm as it bends. Due to the physicaludcharacteristics of the arm, a proper model of robot kinematics and dynamics is difficult to infer from the sensoruddata. Here we propose a non-linear approach to predicting the robot arm posture, by training a feed-forward neuraludnetwork with a structured series of pressures values applied to the arm's actuators. The model is developed acrossuda set of seven different experiments. Because the STIFF-FLOP arm is intended for use in surgical procedures,udtraditional methods for position estimation (based on visual information or electromagnetic tracking) will not beudpossible to implement. Thus the ability to estimate pose based on data from a custom fiber-optic bendingudsensor and accompanying model is a valuable contribution. Results are presented which demonstrate the utility ofudour non-linear modelling approach across a range of data collection procedures.
机译:对于机器人界来说,使用柔软的材料来构造机器人主体提出了新的有趣的挑战。在名为“ STIFFness可控的灵活易学的外科手术用操纵器 udf”的欧盟项目(STIFF-FLOP)中,开发了可弯曲的分段机器人手臂。 udarm的外部由柔软的材料(硅树脂)组成,其内部结构包含空气室致动器 ud和各种传感器,用于监测手臂弯曲时施加的力,位置和形状。由于手臂的物理特征,很难从传感器 uddata推断出正确的机器人运动学和动力学模型。在这里,我们提出了一种非线性方法来预测机器人手臂的姿势,方法是使用结构化的一系列施加到手臂执行器的压力值训练前馈神经 udnetwork。该模型是跨七个不同实验的集合而开发的。由于STIFF-FLOP臂旨在用于外科手术,因此传统的位置估计方法(基于视觉信息或电磁跟踪)将无法实施。因此,基于来自自定义光纤弯曲 udsensor和随附模型的数据估计姿势的能力是一项宝贵的贡献。结果表明了非线性非线性建模方法在一系列数据收集程序中的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号