首页> 外文OA文献 >Simple and Fast Calculation of the Second-Order Gradients for Globalized Dual Heuristic Dynamic Programming in Neural Networks
【2h】

Simple and Fast Calculation of the Second-Order Gradients for Globalized Dual Heuristic Dynamic Programming in Neural Networks

机译:神经网络中全局双重启发式动态规划的二阶梯度的简单快速计算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We derive an algorithm to exactly calculate the mixed second-order derivatives of a neural network's output with respect to its input vector and weight vector. This is necessary for the adaptive dynamic programming (ADP) algorithms globalized dual heuristic programming (GDHP) and value-gradient learning. The algorithm calculates the inner product of this second-order matrix with a given fixed vector in a time that is linear in the number of weights in the neural network. We use a “forward accumulation” of the derivative calculations which produces a much more elegant and easy-to-implement solution than has previously been published for this task. In doing so, the algorithm makes GDHP simple to implement and efficient, bridging the gap between the widely used DHP and GDHP ADP methods.
机译:我们导出一种算法,以精确计算神经网络输出相对于其输入向量和权重向量的混合二阶导数。这对于全球化的双重启发式编程(GDHP)和价值梯度学习的自适应动态编程(ADP)算法是必需的。该算法在神经网络中权重数量呈线性的时间内,用给定的固定向量计算该二阶矩阵的内积。我们使用导数计算的“前累加”来生成比以前为该任务发布的解决方案更加优雅和易于实现的解决方案。这样,该算法使GDHP易于实现且高效,弥合了广泛使用的DHP和GDHP ADP方法之间的差距。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号