首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Simple and Fast Calculation of the Second-Order Gradients for Globalized Dual Heuristic Dynamic Programming in Neural Networks
【24h】

Simple and Fast Calculation of the Second-Order Gradients for Globalized Dual Heuristic Dynamic Programming in Neural Networks

机译:神经网络中全局双重启发式动态规划的二阶梯度的简单快速计算

获取原文
获取原文并翻译 | 示例

摘要

We derive an algorithm to exactly calculate the mixed second-order derivatives of a neural network''s output with respect to its input vector and weight vector. This is necessary for the adaptive dynamic programming (ADP) algorithms globalized dual heuristic programming (GDHP) and value-gradient learning. The algorithm calculates the inner product of this second-order matrix with a given fixed vector in a time that is linear in the number of weights in the neural network. We use a “forward accumulation” of the derivative calculations which produces a much more elegant and easy-to-implement solution than has previously been published for this task. In doing so, the algorithm makes GDHP simple to implement and efficient, bridging the gap between the widely used DHP and GDHP ADP methods.
机译:我们推导了一种算法,可精确计算神经网络输出相对于其输入向量和权重向量的混合二阶导数。这对于全球化的双重启发式编程(GDHP)和价值梯度学习的自适应动态编程(ADP)算法是必需的。该算法在神经网络中权重数量呈线性的时间内,用给定的固定向量计算该二阶矩阵的内积。我们使用导数计算的“前累加”来生成比以前为该任务发布的解决方案更加优雅和易于实现的解决方案。这样,该算法使GDHP易于实现且高效,弥合了广泛使用的DHP和GDHP ADP方法之间的差距。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号