首页> 外文OA文献 >Accurate numerical solution of Euler equations by optimal control of dissipation
【2h】

Accurate numerical solution of Euler equations by optimal control of dissipation

机译:通过耗散的最优控制来精确求解欧拉方程的数值解。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Kinetic Flux Vector Splitting (KFVS) has been extensively used to compute inviscid as well as viscous flows over subsonic, transonic and supersonic speeds over the last two decades. Recently, modified KFVS approach with dissipation control parameter (called m-KFVS) has been developed primarily to reduce inherent numerical diffusion. Generally second order upwind method requires a five point stencil (in case of 1D problem) but with m-KFVS it is possible to achieve nearly second order accuracy with a 3 - point stencil with a suitable choice of the control parameter alpha. The parameter alpha in general will depend on coordinates of grid points thus giving us distributed control on numerical diffusion. A possibility therefore arises about obtaining optimal distributed control by minimising cost function such as numerical entropy produced, maximising total pressure behind a normal shock or for minimising the spread of shock. First, some preliminary results for 1D nozzle problem, subsonic, transonic and supersonic flows around 2D airfoil are presented. Next the m-KFVS CFD Euler solver is coupled with adjoint method to obtain optimal solution. For this purpose TAPENADE software developed by INRIA has been found to be very useful in calculating the gradients of residue vector with respect to conserved vector U and control parameter alpha. It is shown that by combination of the above tools, the suction peak near the leading edge of subsonic flow around 2D airfoil can be very accurately captured.
机译:动流矢量分裂(KFVS)在过去的二十年中已广泛用于计算亚音速,跨音速和超音速速度上的无粘性和粘性流。最近,主要开发出了带有耗散控制参数的改进的KFVS方法(称为m-KFVS),以减少固有的数值扩散。通常,二阶迎风方法需要一个五点模版(在1D问题的情况下),但是使用m-KFVS,可以通过对三点模版进行适当选择的控制参数alpha来实现接近二阶的精度。一般而言,参数alpha将取决于网格点的坐标,从而为我们提供了数值扩散的分布式控制。因此,存在通过使成本函数(例如所产生的数值熵)最小化,使法向冲击后的总压力最大化或使冲击的扩散最小化来获得最佳分布控制的可能性。首先,给出了有关一维喷嘴问题,围绕二维翼型的亚音速,跨音速和超音速流动的一些初步结果。接下来,将m-KFVS CFD欧拉求解器与伴随方法结合使用以获得最佳解。为此,已经发现由INRIA开发的TAPENADE软件对于计算残基向量相对于保守向量U和控制参数α的梯度非常有用。结果表明,通过结合使用上述工具,可以非常精确地捕获2D翼型周围亚音速流前沿附近的吸力峰。

著录项

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号