首页> 外文OA文献 >(Looking) Back to the Future: using space-time patterns to better predict the location of street crime
【2h】

(Looking) Back to the Future: using space-time patterns to better predict the location of street crime

机译:(寻找)回到未来:使用时空模式更好地预测街头犯罪的位置

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Crime analysts attempt to identify regularities in police recorded crime data with a central view of disrupting the patterns found. One common method for doing so is hotspot mapping, focusing attention on spatial clustering as a route to crime reduction (Chainey & Ratcliffe, 2005; Clarke & Eck, 2003). Despite the widespread use of this analytical technique, evaluation tools to assess its ability to accurately predict spatial patterns have only recently become available to practitioners (Chainey, Tompson, & Uhlig, 2008). Crucially, none has examined this issue from a spatio-temporal standpoint. Given that the organisational nature of policing agencies is shift based, it is common-sensical to understand crime problems at this temporal sensitivity, so there is an opportunity for resources to be deployed swiftly in a manner that optimises prevention and detection. This paper tests whether hotspot forecasts can be enhanced when time-of-day information is incorporated into the analysis. Using street crime data, and employing an evaluative tool called the Predictive Accuracy Index (PAI), we found that the predictive accuracy can be enhanced for particular temporal shifts, and this is primarily influenced by the degree of spatial clustering present. Interestingly, when hotspots shrank (in comparison with the all-day hotspots), they became more concentrated, and subsequently more predictable. This is meaningful in practice; for if crime is more predictable during specific timeframes, then response resources can be used intelligently to reduce victimisation.
机译:犯罪分析人员试图以破坏发现模式的中心观点来确定警察记录的犯罪数据的规律性。一种常用的方法是热点映射,将注意力集中在空间聚类上作为减少犯罪的一种途径(Chainey&Ratcliffe,2005; Clarke&Eck,2003)。尽管这种分析技术得到了广泛使用,但评估工具来评估其准确预测空间格局的能力直到最近才对从业人员可用(Chainey,Tompson和Uhlig,2008年)。至关重要的是,没有人从时空的角度研究这个问题。鉴于治安机构的组织性质是基于轮班制的,因此以这种时间敏感性来理解犯罪问题是常识,因此有机会以优化预防和侦查的方式迅速部署资源。本文测试了将每日时间信息纳入分析后是否可以增强热点预测。使用街头犯罪数据,并使用一种称为预测准确性指数(PAI)的评估工具,我们发现对于特定的时间偏移,可以提高预测准确性,这主要受当前空间聚类程度的影响。有趣的是,当热点缩小时(与全天热点相比),它们变得更加集中,并且随后更加可预测。在实践中这是有意义的。因为如果在特定时间段内犯罪更容易预测,那么可以明智地使用响应资源来减少受害。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号