首页> 外文期刊>Knowledge-Based Systems >Predicting time and location of future crimes with recommendation methods
【24h】

Predicting time and location of future crimes with recommendation methods

机译:通过推荐方法预测未来犯罪的时间和地点

获取原文
获取原文并翻译 | 示例

摘要

Predicting time and location of crime has been an important research topic that is potentially beneficial for governments and citizens alike. In this paper, we study crime prediction as a recommendation problem, using fine-grained open crime data. Given fine-grained spatial-temporal units, crime data would become very sparse. Modeling crime prediction as a recommendation problem, however, allows us to use methods in recommendation systems that deal with data sparsity. In addition to the problem formulation, we propose an extended version of matrix factorization, called contextually biased matrix factorization (CBMF) to solve the problem. Focusing on two major types of crimes in the city of San Francisco, we evaluate our approach against several baseline methods. The experimental results show that our method can outperform traditional crime prediction methods and is comparable with stateof-the-art recommendation methods. Specifically, our method captured over 90% of future thefts using only 50% man-hour, 5% more than the most effective traditional crime prediction method. (C) 2020 Elsevier B.V. All rights reserved.
机译:预测犯罪的时间和地点是一个重要的研究课题,可能是各国政府和公民的潜在利益。在本文中,我们使用细粒度的公开犯罪数据研究犯罪预测作为推荐问题。给定细粒度的空间颞单位,犯罪数据会变得非常稀疏。然而,建模犯罪预测作为推荐问题允许我们在处理数据稀疏性的推荐系统中使用方法。除了问题制定之外,我们还提出了一个庞大的矩阵分解版本,称为上下文偏置矩阵分解(CBMF)来解决问题。专注于旧金山市的两种主要类型的犯罪,我们评估了我们对几种基线方法的方法。实验结果表明,我们的方法可以优于传统的犯罪预测方法,与最着色的推荐方法相当。具体而言,我们的方法仅使用50%的人小时,超过50%的未来盗窃,超过最有效的传统犯罪预测方法。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号