首页> 外文会议>International Conference on Web Engineering >Time and Location Recommendation for Crime Prevention
【24h】

Time and Location Recommendation for Crime Prevention

机译:预防犯罪的时间和地点建议

获取原文

摘要

In recent years we have seen more and more open government and administrative data made available on the Web. Crime data, for example, allows civic organizations and ordinary citizens to obtain safety-related information on their surroundings. In this paper, we study crime prediction as a recommendation problem, using fine-grained open crime data. A common issue in current crime prediction methods is that, given fine-grained spatial temporal units, crime data would become very sparse, and prediction would not work properly. By modeling crime prediction as a recommendation problem, however, we can make use of the abundant selection of methods in recommendation systems that inherently consider data sparsity. We present our model and show how collaborative filtering and contextual-based recommendation methods can be applied. Focusing on two major types of crimes in the city of San Francisco, our empirical results show that recommendation methods can outperform traditional crime prediction methods, given small spatial and temporal granularity. Specifically, we show that by using recommendation methods, we can capture 70% of future thefts using only 20% man-hour, 13% more than traditional methods.
机译:近年来,我们已经看到越来越多的开放式政府和行政数据可以在网上获得。例如,犯罪数据使公民组织和普通公民可以获取周围环境的安全相关信息。在本文中,我们使用细粒度的公开犯罪数据研究犯罪预测作为推荐问题。当前犯罪预测方法中的一个普遍问题是,给定细粒度的空间时间单位,犯罪数据将变得非常稀疏,并且预测将无法正常工作。但是,通过将犯罪预测建模为推荐问题,我们可以在推荐系统中充分利用固有的考虑数据稀疏性的方法。我们介绍我们的模型,并说明如何应用协作过滤和基于上下文的推荐方法。基于旧金山市的两种主要犯罪类型,我们的经验结果表明,在时空粒度较小的情况下,推荐方法可以胜过传统的犯罪预测方法。具体而言,我们表明,通过使用推荐方法,我们仅需20%的工时即可捕获70%的未来盗窃案,比传统方法高出13%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号